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ABSTRACT 

Time is critical during search and rescue operations, as human survival 

diminishes exponentially if survivors are not located and recovered efficiently. 

This thesis sought to integrate technologies into a solution that helps rescuers 

plan for a mission utilizing multiple autonomous unmanned systems for search 

operations. It exploits methods of image analysis to fuse data into a common 

map and identify key areas of search interest. The key mission areas were 

developed by comparing edge detection techniques on images obtained from 

remote sensing platforms in the DigitalGlobe database. Together with close-up 

snapshots of the environment obtained from drones, three-dimensional maps 

were developed by stitching the images together into a comprehensive model for 

a mission commander’s use. With the mission bubbles developed, a probabilistic 

road map was used to develop an optimal trajectory to the search area. It was 

found that by connecting to the 20 nearest neighboring points in the K-

dimensional graph instead of all the points, and using the weighted heuristic 

method for the A* search, formed the most optimal means to obtain a solution. 

Together with a tool to generate search patterns for multiple drones, an 

experiment at Camp Roberts was conducted successfully. Technology was 

effectively used in the development of a mission-planning tool utilizing a set of 

heterogeneous unmanned systems for a search mission, which can be expanded 

for various types of military applications.  
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I. INTRODUCTION 

On August 23, 2005, Hurricane Katrina formed over the south-eastern 

Bahamas, caused by the interaction of a tropical wave and the remnants of 

Tropical Depression Ten. Tropical Depression Ten, emerging from western Africa 

in early August, was the tenth tropical cyclone of the 2005 Atlantic hurricane 

season. The storm swept across the Gulf Coast from Florida to Texas, causing 

severe destruction over the next few days. Major roads were impassable and 

there was minimal access to buildings due to the massive floods, as seen in 

Figure 1. The operational environment was dynamically changing each day with 

victims scattered across the massive disaster area. Time is critical during any 

search and rescue (SAR) operation. The survival of human beings will diminish 

exponentially with time if they are not located and recovered efficiently. These 

searches can vary in scale and magnitude, ranging from a single target in the 

form of a wandering hiker in Grand Canyon National Park to a massive 

operational scenario as described here. Hurricane Katrina happens to be one of 

the costliest and among the top five deadliest natural disasters in the history of 

the United States.  

 

Figure 1.  Impact of Hurricane Katrina. Source: Herbert (2005). 
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In the aftermath of a hurricane, emergency responses must adapt to the 

changing conditions, complete their missions and work with different teams to 

respond to the situation. Rescuers must piece together the available data 

obtained from the various sources to reconstruct the operational area and 

develop plans to optimally execute their rescue successfully. Based on the data, 

the commander in chief must identify potential hot spots to dispatch rescue 

teams to locate and extract victims safely. In the past, these tasks have been 

performed by utilizing a large pool of human resources to consolidate information 

and identify the search area. Subsequently, the rescue teams are dispatched to 

the ground for physical search and rescue only if the location is accessible. With 

the advancement of technologies, unmanned systems (UxS) are now equipped 

with an integrated sensor suite utilizing state-of-the-art computational power and 

processing capabilities to generate search plans to increase the success rate of 

the rescue mission. The efficiency of reading large amounts of data and 

development of plans allow the responders to locate the lost individual or groups 

more efficiently. Research in image recognition and detection of victims, 

development of optimal path planning and search path algorithms deriving from 

traditional search theory, and control of heterogeneous sets of unmanned 

systems have been completed independently over the past decade, however. 

The goal of the thesis is to integrate the various concepts into an integrated 

solution that provides a capability for the rescuers to utilize multiple autonomous 

UxSs for rescue operations. This cooperative swarm of heterogeneous UxSs can 

plan and execute a search rescue mission optimally to enhance the survivability 

of the victims. 

A. THE FOURTH INDUSTRIAL REVOLUTION 

The evolution of the previous industrial revolutions was pivotal in shaping 

the world today. The first industrial revolution in the 1800s to 1900s helped 

humans achieve mechanized production using natural resources. The birth of 

steam engines was made possible by the ability to convert water into steam to 

power engines, whilst the second industrial revolution prior to World War I from 
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1907 to 1914 saw the utilization of electrical power for mass production of 

products. The current third industrial revolution, commonly known as the digital 

revolution, started in the 1980s and saw the advancement of technologies that 

brought computers and the Internet to the mass population. The increase of 

computer power today has grown to the extent that our mobile devices are more 

powerful than the computer that was used to fly the first man to the moon. From 

the foundations of the digital revolution, the fourth industrial revolution is evolving 

exponentially and disrupting almost every industry in the world today. The fusion 

of technologies that integrate sensory information obtained from the physical and 

biological world merge the data into a digital environment that allows computers 

to simulate, predict and provide recommendations to decision makers.  

These emerging technologies, coupled with the unprecedented 

computational processing and storage capacity, pave the way for many 

applications where large data sets are required to be crunched by human 

analysts within a short time. These applications can range from the financial 

industry to military applications. The powerful computers can identify patterns 

with the data and simulate various possible scenarios to provide 

recommendations. In addition, the ability to handle high bandwidth of data and 

process them on miniature computers that can be packed on board unmanned 

systems resolves past challenges of large avionics required to control multiple 

unmanned aerial systems (UASs) for missions. The impressive progress in 

research and development in the computer science discipline has seen the 

growth of artificial intelligence (AI) algorithms. The algorithms observe patterns 

from the vast resources, learn from these sets of data to provide the operators 

with predictions, and suggest possible solutions to a task within seconds. This 

path shows the way toward potential usage of robotics and unmanned 

technology in the application of a search and rescue operation.  
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B. CHALLENGES OF SEARCH AND RESCUE OPERATIONS 

The biggest challenge in any search and rescue operation is the ability to 

obtain and disseminate information to the relevant party to get an overview of the 

operational area, to derive a plan to execute the rescue mission. The pieces of 

information might not be consistent as they are collected based on different 

perspectives and interpretation. For the search and rescue mission to achieve a 

higher success rate, multiple stakeholders must work closely to piece the data 

collectively to form a consistent view of the operational environment and 

disseminate to the right party.  

Time becomes the critical factor as any delay will diminish the survival 

probability of any human in such a harsh environment. With time as an important 

factor in the operation, the usage of multiple unmanned platforms working 

together and sharing information of the environment from various perspectives 

will speed up the search and rescue operations. These sets of autonomous 

heterogeneous or homogenous unmanned systems can work in swarms, actively 

sharing information to collectively achieve the goal of identifying victims and 

deriving optimal paths for rescuers to reach them.  

C. MOTIVATION FOR USING SWARM UNMANNED SYSTEMS 

Technologies have matured, but reservations on the use of swarm 

unmanned systems must be resolved. The control of unmanned systems or 

drones, both in the commercial and military sector, have been inspired by the 

natural world. The emergent behavior to accomplish a complex task with simple 

agents working collectively has shifted the paradigm from an operator controlling 

a single platform to multiple platforms. An influential report by John Arquilla and 

David Ronfeldt (2000) defined swarming doctrine, which some war strategists 

envisaged as a potential “game-changer” in the evolution of war, as a 

“deliberately structured, coordinated, and strategic means to strike from multi 

directions, through a sustainable pulsing force and/or fire, close-in as well as 

from a standoff position.” Arquilla and Ronfeldt argued that swarming tactics 
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should not be purely used as a military tactic but can be expanded and applied to 

crowd control or SAR missions.  

Following this argument, the question is how can swarm be leveraged and 

used in SAR? The capability to be structured and coordinated to extract a large 

amount of information at a greater speed will thus shorten the search time, which 

will be pivotal in the survival of the victims during the operations. Paul Scharre, a 

fellow and director from the Center for a New American Security, articulated in 

the report “Robotics on the Battlefield Part II: The Coming Swarm” that the 

dispersion of small and inexpensive drones in place of the expensive versatile 

platforms like the F-35 Joint Strike Fighter (with its attendant risk of losing a pilot) 

can extract a larger amount of information at a greater speed with lower cost and 

disaggregate risk from any enemy location, thus reinforcing the possibilities of 

utilizing drones for SAR applications (Scharre 2014). 

There is a need to handle multiple platforms without the increase of limited 

human resources, however. The Office of Naval Research (ONR) utilized 30 

Raytheon-built Coyote UASs as part of the Low-Cost UAV Swarming Technology 

(LOCUST) program to demonstrate the capabilities whereby a single operator 

can manage multiple platforms. “We have an operator that’s monitoring it [the 

drones], keeping eyes on what’s going on, and can reach in and change things if 

they want to,” LOCUST program manager Lee Mastroianni said. “But the reality 

is, [the drones are] flying themselves, they’re performing their mission and the 

operator’s supervisory. So, it tremendously reduces the workload to be able to 

control large numbers of UAVs” (Hope 2016). This demonstration showcases 

that with the right application of autonomy in the drones, a single operator could 

control multiple platforms.  

These successful demonstrations have been completed in a controlled 

environment in which prior intelligence of the environment is known. Much swarm 

research has been completed on homogeneous platforms as inspired by the 

natural world. Each robot is unware of its teammates’ actions but completes 

shared goals collectively. The robots apply relatively simple local control laws, 
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which, when combined with the other robots, result in the global goal being 

achieved. Apart from the public resistance in the extent of automating machines 

as highlighted in “The Coming Age of Autonomous Systems” by Tan (2017), the 

drones’ inability to adapt and evolve in a dynamic environment restricts mission 

capabilities. Nevertheless, the potential to effectively handle a task that can 

enhance the efficiency for a mission that is time critical is too attractive to be 

ignored.  

The fourth industrial revolution paves the way for robotics in many 

applications as the world evolves. The rise of hybrid warfare in an urban 

environment as well as operations in a post-disaster arena brings about a 

dynamic and uncertain environment for systems to be operated in. This creates 

an opportunity for robotics technologies. With the exponential growth of 

autonomous robotics systems embedded with data-mining technologies, the 

future is without doubt driving toward more autonomy amongst the robots to 

overcome the ageing population. It was reiterated in “Disruptive Technology and 

US Defense Strategy” that these advances in capabilities are the underlying 

technologies that will support the autonomous systems (Shawn Brimley et al. 

2013). With the integration of the disruptive technological capabilities to be able 

to observe and orient the robots collectively with lightweight and commercially 

off-the-shelf (COTS) components, a wide latitude of applications is made 

available for autonomous platforms to be explored, operated both individually or 

collectively in a swarm, to accomplish any type of mission. 

These systems will not be replacing human tasks but instead should 

complement them in a manned-unmanned teaming environment. Many in the 

military, due to the lack of personnel resources, have pushed for an autonomous 

system to replace manned aerial and ground capabilities. The key intent is to 

push for increased autonomy for the system to make decisions and accomplish 

tasks with minimal user input. The debate on the use of robots to attack an 

adversary, like drone strikes executed in Yemen and Pakistan by the United 

States, has proven to be highly controversial. Human Rights Watch has 
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campaigned to ban such actions since in their position, they believe it is immoral 

to kill any humans remotely. Collectively, this is also being discussed and 

debated at the United Nations level. Therefore, there is a need to understand the 

possible implication and select tasks that are practical in complementing the 

human factor prior to the application of autonomy in these platforms. 

D. RESEARCH PROBLEM 

The utilization of the swarm technologies in which a network of drones 

overwhelms the enemy through a massive onslaught, drawing fire and thus 

expending enemy resources, was a possible scenario painted by Defense 

Advanced Research Projects Agency (DARPA). Alternatively, it can be used as a 

means of intelligence gathering or sent in as a form of jamming against enemy 

communications systems. This thesis attempts to expand swarm operations on 

military applications and address the problem of whether such a concept of 

operations, a swarm of UASs as shown in Figure 2, can be used to enhance the 

search operations of the responders? Specifically, this thesis exploits methods of 

image analysis and generation of optimal paths and search patterns for a rescue 

mission by a set of drones.  

 

Figure 2.  Swarm of UASs flying in operations. Source: Laboratory of 
Intelligence Systems (2010). 
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To narrow down, this thesis deals with consolidating information and 

navigating through an ever-changing and dynamic environment created in the 

aftermath of natural disaster. To solve this problem, several tasks in the various 

disciplines must be addressed. (1) The operational environment needs to be 

fused together by extracting information from various sources including remote 

sensing equipment, local surveys completed by the UAS and imagery obtained 

from the ground; (2) optimal trajectory and search plans must be developed for 

the swarm of heterogeneous UxSs to obtain the best path and search pattern in 

the respective mission bubbles; (3) image processing in the detection and 

identification of victims has to be processed and the information of the location of 

potential victims or hazardous areas has to be constantly shared amongst the 

various rescue teams for the safe extraction of the victims.  

E. PROPOSED APPROACH 

Based on the research challenges, a proposed approach to solving the 

problem was established. The concept of operations must be defined with key 

requirements of the mission established. The extent of the consolidated 

information to obtain the situational awareness will determine the success in 

most operations. Apart from rescuing victims, the stakeholders will also require 

vital information on the status of key infrastructure (e.g., the functionality of the 

power grid, water treatment plant or potential temporary housing areas) as well 

as the accessibility around these locations for the recovery phase. Thus, 

information needs to be constantly updated and shared amongst all 

stakeholders.  

The proposed approach was based on five phases in a closed-loop 

sequence for the operational mission as shown in Figure 3. In the first phase, all 

the information will be gathered from the various sources obtained prior and after 

the disaster to be pieced together to form an operational area. The stake-holders 

utilize this operational map to plan and develop mission goals for the swarm 

UxSs to complete at the tactical level. Based on the given mission, an optimal 
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trajectory to the search area and search patterns are developed for the UxSs to 

search autonomously. 

 

Figure 3.  Proposed approach to search and rescue operations 

As the operations are executed in an uncertain environment, the search 

plan formulations will be based on a belief map obtained through a probabilistic 

function. These probabilities are derived from information that was received 

throughout the mission. The three-dimensional map based on the initial 

information, supplemented with the updated images either from satellite or other 

UxSs obtained during the mission, are used to optimally plan its trajectory and to 

complete the search mission. The optimal trajectory path planning can be 

enhanced with machine learning to adapt to various scenarios in future studies. 

With the given trajectory in the form of waypoints, the UxSs will embark on the 

search mission, detecting and identifying the potential survivors in the area. 

Constant updates to the rescue teams will be sent for them to execute the rescue 

operations and to the main control station for planning and coordination. 
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F. THESIS ORGANIZATION 

The key areas of research are based on the five phases of the search and 

rescue operation as described above, with the key thrust being the integration of 

the various technological concepts and evolving them through experimentation 

via computational simulations and live demonstration. As such, this thesis is 

organized as follows. The various concepts of operations are explored in Chapter 

II. A literature review in the various disciplines applicable to the search problems 

is performed to derive the proposed concept of operations. This will translate to 

the framework of the heterogeneous swarm of UxSs to operate and complete a 

search mission. 

The theoretical method with the mathematical implementation associated 

with the various concepts in developing the situational awareness and optimal 

UASs path planning will be explored prior to the discussion of the proposed 

resolution of each task in the subsequent chapters. In Chapter III, image analysis 

to develop mission bubbles and identification of points of interest are developed. 

Subsequently, a three-dimensional map based on the images obtained from 

remote sensing or other means will be developed in the MATLAB environment to 

give the commander an overview of the situation. With the maps developed, the 

optimal trajectory to complete the search is discussed in Chapter IV. The results 

for each chapter will be presented in a simulated environment in MATLAB. 

Evaluation for the optimal method in the various phases will be based on 

measurable metrics and tangible outputs. Finally, in Chapter V the results of the 

demonstration of the search and rescue operation in conjunction with the 

research completed by Ang at Camp Roberts will be presented before concluding 

with the findings and recommendations of the thesis.  
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II. REVIEW OF CONCEPTS  

In this chapter, a literature review in the various disciplines, including 

search theory, path planning, and imagery for detection and recognition, will be 

completed. Based on the concepts and technological maturity, a proposed 

concept of operations will be defined for a search and rescue operation. Prior to 

the formulation of the problem statement, it is essential to understand the scope 

of the task required in a search and rescue operation.  

A. SEARCH AND RESCUE OPERATIONS 

SAR is a complex operation whereby multiple groups with different skill 

sets work together in response to the disaster. Pieces of information are being 

obtained from multiple sources with mixed reliability. In the initial phase, 

information is either obtained through aerial surveys with manned helicopters 

and/or aircraft or from images obtained from those at the heart of the disaster 

and fed back to the personnel on the ground for the rescue operation. These 

challenging tasks are being undertaken visually, which means that the 

information received might be limited. With the scale of the area to be searched, 

it is challenging for the observer as shown in Figure 4 on board the USAF 

helicopter to be able to scan such a wide area without occasionally missing 

critical information during the search.  

Local rescue teams or the population on the ground are alternative 

sources of information. They might be emotional because of the disaster, 

however, reporting biased information that might hinder decision makers. All this 

is being communicated through a congested network to a small pool of data 

analysts who attempt to piece the information together. Based on the ability and 

experience of the data analyst, an operational picture is painted for the decision 

makers to draw plans for rescue operations to be executed. Without the full 

awareness of the situation, however, decision makers might allocate resources 

poorly and thus hinder rescue operations. All these tasks completed by the 
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limited pool of emotionally charged humans are available for the rescue 

operations, draining their energy, and potentially degrading their decision-making 

capabilities. 

 

Figure 4.  Rescue personnel during a search operation. Source: U.S. Air 
Force (2005). 

With time as the critical element in search and rescue operations, various 

technological concepts can be integrated into a capability that will aid rescuers in 

the disaster response. Multiple heterogeneous unmanned systems can 

collaborate autonomously to work in tandem with the rescuers to respond 

effectively in an urban search and rescue operation. The derivation of the 

concept of cooperation of an unmanned-manned teaming in rescue operations 

will be presented in this chapter. Prior to conceptualizing the operations, it is 

essential for the tasks in a mission to be analyzed to apply the right set of 

robotics technology to optimize the mission.  
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B. URBAN ENVIRONMENT 

Search and rescue operations are typically split into two types: wilderness 

and urban. In the context of this research, search and rescue operations will 

occur in an urban domain characterized by destruction of man-made structures 

as shown in Figure 5, where rescuers are operating in the aftermath of the 

earthquake in Nepal. The chaotic environment is dynamically changing after 

each day with the possibility of further collapse when the rubble is displaced 

unnecessarily by anxious or inexperienced rescuers. A false negative of not 

reporting a victim, even though he or she is there, or a false positive that requires 

a fruitless search, are some of the challenges that the rescuers must face during 

the search and rescue operations.  

  

Figure 5.  Rescue workers in operations. Source: USAID Disaster Assistance 
Response Team (2015). 

Schwab describes three main phases of an emergency management and 

disaster life cycle: response, recovery and preparedness with mitigation 

encompassing these phases, as shown in the flowchart in Figure 6 (Schwab 

2014). Of the three phases, response is the most critical in terms of locating 

survivors. The key challenges are to identify the areas of search and locate them 
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with limited resources in an ever-changing terrain. The SAR operations are 

executed at two distinct levels: a strategic level for overall coordination and 

planning, and a tactical level on the ground for rescue. Upon the occurrence of 

the disaster, responding to the situation and recovering from the destruction is 

naturally the first step. Response is a critical phase, which is typically led by the 

first responders from the local fire rescue department who directly deal with the 

immediate threat to the victims in the area.  

 

Figure 6.  Phases of a disaster life cycle. Source: Schwab (2014). 

The goal of the rescue team is to search for victims and rescue them. 

Rescue includes the assessment of the victim’s medical condition, stabilizing 

them, and extricating them to a safe location. At the strategic level, the 

stakeholders will focus on the broad mission planning and coordination among 

the different parties. At the tactical level, on the other hand, the ground rescuers 

will be tasked to locate and rescue the victims at the site. To understand the 

specific task required to be completed at the tactical level, a review of the 

operating procedures (SOP) for first responders was completed to solve the 

research problem. Although this is mainly completed by personnel on the ground, 
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it is essential to understand the whole process before conceptualizing a solution 

for the search problem. Based on the United States Fire Administration, the SOP 

for a search and rescue operation in a collapsed building is based on two main 

phases: (1) scene management, which includes the establishment of command 

and control of the area and defining rescue sectors for the teams, and (2) 

technical rescue operations, which define the specific procedures for rescue in 

confined space, rope rescue, rescue under structural collapse and trenches (U.S. 

Fire Administration 1996). 

The commander on the ground is required to complete the initial 

assessment of the area to derive an optimal but safe plan for the search 

operations. With the assessment completed, the rescue will commence for 

casualties on the surface before expanding to the concealed victims who are 

lightly trapped or possibly in the voids of the collapsed building. The global 

survey of the site covers a wide scope of tasks to be completed in a very short 

time. Depending on the environment, the assessment can be simple or complex. 

An experienced commander might be able to complete the task quickly. The 

scale and nature of each mission is different and unique in terms of the 

environment and the dynamics of the personnel involved, however. Moreover, 

the environment is likely to be unorganized, coupled with the potential risk due to 

tampering with the rubble by volunteers or civilians eager to save their families 

and friends. The key objectives of the damage assessment include (1) 

determining the severity of the damage, (2) identifying safe entries and exits, and 

(3) exploring the possibility of removal of debris to commence further rescue 

operations in a safe manner, among others. Subsequently, during the rescue 

operations, the commander must constantly report to higher command. 

Based on various applications, technologies can help provide, collect, and 

store information that can be promulgated to a wider audience in a short time. 

Will unmanned platforms be used to aid the commanders and relieve their stress 

by completing information intensive tasks? Murphy et al. (2008) suggested that 

unmanned technologies can aid the commander in several areas. Tactical search 
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and strategic planning through reconnaissance and mapping have been two 

fundamental elements in which current technologies have matured sufficiently to 

enhance the speed and completeness of the rescue mission. They further 

defined search as the activity of identifying victims or potential hazards, while the 

reconnaissance and mapping task provides the responders a general situational 

awareness through maps constantly being updated with the changes in the 

environment (Murphy et al. 2008). This distinguishes the two levels of tasks 

robots take to aid the rescuers. Tactical search and rescue are usually executed 

by the first responders to find and extract survivors based on local information. 

This will cascade to the strategic level, where all the information will be 

consolidated and communicated throughout the whole operational area. In 

search and rescue operations, however, it is not always clear which will occur 

first. Unlike a military operation, where a strategic plan will be derived prior to the 

execution of the tactical plan, in search and rescue the information is likely to be 

generated from the tactical level up.  

An aerial view, which can cover a large area, provides the best 

perspective of the environment. Such a view will be dependent on the severity of 

the disaster, however, which will dictate the resources available for such a 

survey. Moreover, in the aftermath of a disaster where major roads are 

impassable, the aerial vehicles provide a significant advantage in collecting data 

compared to ground elements. As the mission requires a large coverage of the 

area to obtain information required, unmanned technologies present a unique 

cheap and light solution. Drones have been in fact utilized in small quantities 

during search and rescue operations in the aftermath of several natural disasters 

in the United States. An iSENSYS UAS (Figure 7) from the Center for Robot-

Assisted Search and Rescue (CRASAR), an experimentation institute in Texas, 

was used as part of the Florida State Emergency Response Team to search 

inaccessible rural areas in Mississippi in the aftermath of Hurricane Katrina. The 

Department of Defense utilized the BAE fixed wing Silver Fox in New Orleans to 

search for potential rescue sites. This clearly shows aerial footage used in both 
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the tactical and strategic levels of search operations. In the tactical environment, 

it will provide a vantage point of the area, especially when it is inaccessible, while 

the UAS can be used at the strategic level to identify potential rescue sites.  

 

Figure 7.  CRASAR UAS used in Hurricane Katrina. Source: Murphy et al. 
(2008). 

Even though the research focuses on the search, it is essential to 

understand what the rescuers are looking out for at the tactical level to apply the 

right solutions for their search at the higher level. Upon the establishment of 

command and control, the rescue teams are sent into the area to provide medical 

treatment and evacuate the victims to a safe location. The rescue teams will save 

those victims on the surface prior to rescuing those victims who are lightly 

trapped under the debris. These victims under the rubble are typically located by 

search dog or acoustic or thermal sensors. Robotic applications have been 

discussed since the early 1980s, but not many successful platforms have been 

implemented. Robots with manipulator arms were used to observe in accessible 

areas, for example, over railings or voids under collapsed buildings after the 

World Trade Center collapsed on September 11, 2001. Specialist teams are 

required in the search for victims inside void spaces or under debris. The high-

risk operation in an enclosed place and the need to remove rubble as they 
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entered the voids required well-trained personnel. The conventional approach for 

this search under rubble for survivors involves the inefficient method of removal 

of rubble through passing of buckets. This large amount of human resources is 

time consuming and draining, and at times might complicate the situation as the 

removal of debris might be completed by inexperienced personnel leading to 

further collapse. Mini and micro robots designed based on the movement of 

snakes might be able to search for survivors safely by wriggling through voids. 

Such robots have not been fielded and are still being tested, however.  

The search and rescue operation is clearly segregated into two main 

tasks. The rescue operations must be completed by responders who need to 

interact with and assess the victims. In the future, this could be automated, 

however. With the available technologies, the focus for the research essentially 

will be in the search phase. The key aim is to shorten the time to locate the 

victims. With increased autonomy of platforms, Macwan (2013) envisioned that 

human SAR teams will eventually be augmented and work closely with teams of 

autonomous robots in the search aspect of the operations. The vision of an 

augmented framework presents two challenges: to overcome the energy 

limitation of the individual UASs and the quality of sensory data that the UASs 

can accommodate. Based on understanding the tasks required at the tactical and 

strategic level, it is essential to review search methods within the discipline of 

search theory and expand the concept from single to multiple robots, to include 

the ability to collate and share information to optimize the energy limitation and 

payload capacity that each drone can handle.  

C. SEARCH THEORY 

In search operations, the teams have an area of responsibility to search 

for an object of interest. In all disasters, some form of information about the 

location of interest should be available. As the search evolves, however, this 

information will be updated based on the data obtained on the ground. Thus, the 
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teams will be operating in a dynamic environment where changes to the 

trajectory will depend on the information received at any moment.  

Modern search theory evolved during World War II and subsequently 

became a field within the discipline of Operations Research. Bernard Osgood 

Koopman and his team at the United States Navy’s Anti-Submarine Warfare 

Operations Research Group (ASWORG) developed techniques to optimally hunt 

for German U-boats, which led to the theoretical foundation for search theory. 

Koopman defined basic search concepts based on the probability model. He 

developed probabilistic models for search areas and techniques to optimally 

search for the target in the area. Although the method was successfully 

implemented, Koopman’s research was specified for a stationary target. Dennis 

Kelly applied the concept to a dynamic environment for search and rescue 

missions in 1973. The motivation for the development of search algorithms for 

optimal search was made possible with the availability of computer technologies. 

Search theory described analytical methods in identifying the shortest or most 

efficient solution that governs the allocation of resources in achieving its desired 

goal by maximizing the probability of success while minimizing the efforts based 

on the defined metrics. The metrics typically take the form of distance travelled or 

amount of time required to complete each task.  

Monte Carlo computation to obtain distribution of a target for a multi-

scenario environment was employed as a dynamic planning tool in searching for 

ships lost at sea. The probability map was built based on a grid of cells that 

described the distribution of the search. A detection probability of the target 

based on the prior information was tagged to each cell. Based on the map that 

was developed, a search plan was derived. The probability map in Figure 8 was 

developed for the search for USS Scorpion (SSN-589), a nuclear submarine, in 

1968. The probability developed based on the consolidation of data from various 

experts who postulated the possible location of the submarine. According to 

Richardson and Stone, after several months of search operations, the USS 

Scorpion (SSN-589) was found at the base of the peak of the probability map. 
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Throughout the search, decisions were evolving based on the results obtained 

during the search process (Richardson and Stone 1971). 

 

Figure 8.  Initial distribution of the search for USS Scorpion (SSN-589) 

Bayesian analysis is a recursive method that computes the probability 

based on unknown parameters. The estimation of the distribution is based on a 

posterior of the parameter of interest. The posterior distribution encompasses a 

prior distribution about the parameter and its likelihood of occurrence based on 

observed data. The posterior distribution can be obtained analytically or 

approximated in the form of the Markov chain Monte Carlo (MCMC) method. The 

motion model of the target is recursively combined with the sensor measurement 

model to compute the probability distribution of the target location. This Bayesian 

approach will determine the location of the target state probability density 

function (PDF). A prior probability distribution based on the initial information of 

the possible target location is used as the starting point of the search problem. 
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The Gaussian distribution of the target location is based on experience of past 

natural disasters, where survivors were likely to be in areas of collapsed 

buildings or along main roads. The search algorithm will choose a strategy that 

minimizes the time to find the target or maximizes the probability of finding the 

target based on the limitation of its energy. The probability of target in each cell is 

updated and recomputed once each cell has been evaluated or when information 

of the belief map is shared among the various resources.  

1. Situation Mapping and Damage Assessment 

The biggest challenge is to derive optimal plans for a search and rescue 

operation when information of the situation is either incomplete or inaccurate. To 

obtain an optimal solution of any search problem, it is essential that a map of the 

area can be pieced together as accurately as possible. This complete situational 

awareness map can be obtained through multiple sensors. To get an overview of 

the operational area at the strategic level, one of the means is to obtain high 

resolution geospatial data from commercial satellites orbiting around the Earth. In 

their research on the aftermath of an earthquake in the city of Port-au-Prince, 

Haiti, Hussain et al. (2011) reiterated that imagery obtained and analyzed from 

remote sensing platforms greatly assisted the authorities and the rescuers in 

providing damage assessment for the stakeholders to develop a plan for 

remedial measures in the response and recovery phase.  

Remote sensing is a field designated as a discipline to enable people to 

look beyond the range of our visual and spectral range. Research has tapped 

into these remote sensing platforms and utilized sensors of different disciplines—

for example, electro-optical (EO) cameras, synthetic aperture radar, light 

detection and ranging (LIDAR) sensing equipment—or a combination of such 

sensors for assessment of a post-earthquake environment. One simple method 

that was discussed was based on comparing the pixels based on the fused data 

obtained from the EO and synthetic aperture radar satellite images.   
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The most accurate library of Earth imagery and analytics is provided by 

DigitalGlobe in the U.S. and France’s Airbus Defense and Space, utilizing the 

SPOT constellation satellite. These high-resolution wide-area optical images are 

used by the defense and commercial community. Federal agencies utilize them 

to observe changes in the environment, while commercial enterprises mainly use 

those that provide navigation information (e.g., Google and Apple utilize them to 

obtain updates on road conditions). These images are also often used by 

meteorologists to study weather patterns. The French Satellite Pour 

l’Observation (SPOT-1), launched in 1986, was one of the first satellites 

providing high-definition images of the Earth. At that point in time, a 

panchromatic (black-and-white) camera with a ground-spatial resolution of 10m 

and a multispectral camera with a resolution of 20m was used. This set of 

satellites evolved with the addition of SPOT 6 and 7, which will assure the 

provision of imagery until 2024. In 1997, Earth Watch Inc. launched an improved 

version of the sensor with a 3m-resolution panchromatic camera and a 15m-

resolution multispectral camera on the EarlyBird-1 satellite. As sensor 

technologies advanced, the resolution has improved to a more accurate sub-

meter resolution for the panchromatic and to a meter resolution for the 

multispectral camera. 

The high-resolution multispectral or panchromatic imagery was obtained 

from DigitalGlobe’s suite of geospatial big data (GBDX) for this research. Data 

obtained from various time frames was used to develop the initial mission 

bubbles for the search operations. Comparisons were made to identify potential 

areas to be searched. With the mission bubbles defined, a belief map based on 

the posterior distribution was constructed for the automated generation of the 

path and search plan. Five satellites operating in sun-synchronous orbits 

provided the data: WorldView-I, Geo-Eye-1, WorldView-2, WorldView-3 and 

WorldView-4 (Figure 9). Each of them operates at a different altitude and has 

different resolution, with the best being WorldView-3 and WorldView-4 with a 

0.31m resolution for the panchromatic and 1.24m for the multispectral. Samples 
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of the imagery as extracted from the technical data sheet are shown in Figure 10. 

The details and specification of each satellites are summarized in Table 1.   

Table 1.   Specification of DigitalGlobe satellite. Source: DigitalGlobe (2015). 

Specifications WorldView-
1 GeoEye-1 WorldView-

2 
WorldView-

3 

 
WorldView-

4 
(GeoEye-2) 

 
 

Operational 
Altitude, km 

 
496 681 770 617 617 

 
Spectral 

Characteristics 
 

Pan Pan + 4 MS Pan + 8 MS Pan + 8 MS 
+ 8 SWIR Pan + 4 MS 

 
Panchromatic 
resolutions, m 

 
0.50 0.41 0.46 0.31 0.31 

 
Multispectral 
resolution, m 

 
N/A 1.64 1.85 1.24 1.24 

 
Weight Class, kg 

 
2500 1955 2800 2800 2800 

 
Launch Date 

 
Sep 18, 2007 Sep 6, 2008 Oct 8, 2009 Aug 13, 2014 Nov 11, 2016 

 



 24 

 

Figure 9.  DigitalGlobe suite of satellites. Source: DigitalGlobe (2015). 

 

Figure 10.  Sample images from the various satellite. Source: DigitalGlobe 
(2015). 
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2. Multi-robot Coordination

Multi-robot coordination generally requires the planning, directing, and 

controlling of a team of multiple autonomous robots operating in the same 

environment to carry out either a single task or multiple tasks individually or 

collectively to achieve a global-level goal. This set of robots can have similar 

capabilities in a homogenous swarm or have varying capabilities in a 

heterogeneous swarm. In a heterogeneous set of robots, each robot will have a 

specialized set of skills, like the special forces in the military. To be self-

contained to execute the mission, each team will be staffed with an explosives 

expert, a medic to provide first aid, and a communications specialist to handle 

the signal equipment. This type of arrangement is common in our everyday life; 

whereby, an individual will be required to complete a specific task to resolve a 

larger goal.  

This concept of distributed intelligence allows multiple robots to work 

together to achieve a larger goal that might not be possible to be completed 

individually. Parker defines distributed intelligence as systems of entities working 

together to solve a problem. The domain space in the distributed intelligence can 

be broken down in terms of the interaction between the systems, as in the four 

main categories illustrated in Figure 11 (Parker 2008). In this illustration, there 

are three main axes: the awareness of the other platforms on the team, the 

classification of the goals (individual or shared), and if each robot’s action will 

advance the goals of the others on the team. The collective, cooperative and 

collaborative interaction tends to advance the goals of the others, while the 

coordinative does not, despite its name. In a simple grouping, the awareness is 

split into two categories: awareness or lack of awareness. Awareness can be 

defined as the means for the robots to exchange and share information to 

execute an action. Being unaware is based on the robots operating on the 

principle of stigmergy, whereby communication between entities is not direct but 

reacts based on the traces left in the environment by the other robots. For the 

advancement of goals, a robot can advance the goals of a team if its actions are 
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helpful to the team, whereby, the other robots will not be required to repeat the 

same actions. An example will be in search and rescue; as a member of the 

team of robots, each robot is required to search a small area. Each robot’s 

search action is helpful to the other robots who will not be required to search the 

exact location again since it has been completed by another teammate.  

Figure 11. Categorization of distributed intelligence 

Based on the common forms of interaction, each type of interaction is 

explained further for clarity. The simplest form or interaction, the collective 

interaction, evolved based on biological tasks seen in the natural world. 

Examples of such tasks includes bear foraging, swarming of locusts, the flocking 

of birds and the herding of cows. Not all the animals are aware of the other 

animals except that they share a common goal to either hunt for food or to move 

to a specific location. Although they are not aware of each other, their individual 

actions are beneficial to the others in the group. Robots in such interactions are 
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based on simple local control laws and, when combined, result in an emergent 

property that allows them to achieve a global goal.  

As the exchange of information is made possible by higher bandwidth in 

communications, providing awareness allows for more cooperative and 

collaborative interactions between robots. From a collective interaction, a lateral 

shift is a robot’s ability to be aware of the actions of its teammates and, at the 

same time, have a shared goal where its actions are beneficial to the others. In 

such interaction, each robot due to its limited capacity can only complete a 

specific task to achieve a bigger goal. In the context of search and rescue, the 

global objective or goal is to identify victims, but each robot has limited energy 

capacity. Thus, the area can be split into smaller regions for each robot to 

search, working together to achieve a common goal of identifying victims in the 

search area. There is a grey line between this form of interaction and the 

collaborative classification. In the collaborative classification, everyone has an 

individual goal to achieve; this form of interaction is typically applied in complex 

problems to achieve a global goal; it is necessary to split the task to simpler 

individual goals for each robot to tackle. The distinction between the collaborative 

and cooperative is characterized by each robot helping each other to accomplish 

its individual goals as each might have a specific skill set not present in others. 

The example of the search and rescue in the cooperative was a simplistic 

scenario. To extend from a cooperative to a collaborative interaction, while the 

individual robots are navigating to the specific location for the search operations, 

some robots because of interference from the global position system (GPS) 

coverage cannot reach their search area independently. If they work together 

and obtain GPS positions from the other robots that have a clear coverage of the 

satellites, however, the individual goal of reaching the search area can be 

completed with the help of the teammates. This is a form of collaborative 

interaction that can be seen in multi-robot systems. The last type of interaction is 

more applicable to a factory whereby the robots are aware of each other, but 
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must coordinate to ensure that they do not clash with each other during the 

completion of their individual goals.  

Based on the understanding of the categorization of interaction in a 

distributed intelligence domain, the cooperative and collaborative means of 

interacting is the likely choice for the search and rescue operation. A global goal 

is to rescue victims, but to do that you will need to search for them. Thus, there is 

a shared goal between the robots. As the magnitude of the area becomes bigger, 

however, an individual goal might be required at the tactical level, and thus, a 

more collaborative interaction will be implemented. Therefore, the application is 

dependent on the requirements and nature of the operations. The next question 

is the means to control the interaction: Should it be via a centralized system or a 

decentralized method? Each has its own pros and cons, so a review of past 

research completed in this area is required to understand the strengths and 

weaknesses of the two schemes. 

a. Centralized Multi-robot Coordination

Centralized coordination is akin to a hierarchical control whereby all 

commands are given by a single chain of command, like military operations. A 

single control unit allocates the various tasks to the robots. For this to happen, a 

communication link between the robot and the central command is always 

essential. With such a coordination strategy, a large amount of information will be 

generated and transferred through the network to the master controller. The 

master controller will require crunching a large set of information obtained from 

the various robots to disseminate the next set of instructions to them. Thus, it 

might take a longer time to complete the analysis of the data received. Since all 

the information resides within the master controller, however, it can consolidate a 

more complete picture to optimize the plan and allocate the necessary resources 

to complete the mission more effectively.  

The application of the centralized approach for coordination of multiple 

robots was completed in multiple research, but in the application for specialized 
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and specific tasks. The research areas include motion planning, both in the static 

and dynamic environment, formation control of robot agents in specific 

formations, and search coverage and exploration problems. An example of such 

central coordination was implemented with a refueling system. A schedule for the 

refueling of multiple UAS by a single tanker that acted as a central controller was 

also explored by Shima and Schumacher in their research (Jin et al. 2006). In 

that study, the UAS reported to a centralized command. Fierro and Spletzer 

(2005) expanded such a concept into an optimization tool whereby a centralized 

command developed to coordinate multiple unmanned vehicles in real time. The 

optimization tool solved the problem with a receding-horizon mixed-integer 

program. The coordination strategy developed paths and input the control 

commands to the robots to accomplish the mission. Although the mission 

objectives could be varied, the targets for the robots to explore were fixed (Fierro 

and Spletzer 2005).  

As the targets were fixed, however, the multiple robots’ coordination was 

completed in a controlled environment, which is not likely to occur in a search 

mission. Brumitt and Stentz (1996) extended their research in centralized 

coordination of multiple robots in a dynamic environment by designing a method 

that allows changing the robot’s plan and assigning new paths based on 

knowledge of the updated data. With such an implementation, multiple robots 

can handle unforeseen circumstances like what is expected in the aftermath of a 

natural disaster. The centralized planner updates the assignment of the robots to 

achieve the goals based on minimizing the mission cost (Brumitt and Stentz 

1996). Tan et al. (2017a) implemented a centralized control for multiple ground 

robots in a search mission in a detect-to-engage robotics challenge. The 

dependency on the central command to make the decision and transmit 

commands, however, reduced the flexibility and did not tap into the full potential 

of the autonomous ground vehicles. Since the platforms can be autonomously 

controlled, each should handle its own navigation based on the global targets set 

by higher command. On the other hand, with the full assessment of information, 
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the central command utilized the resources more effectively (Tan et al. 2017). 

The approach of centralized command has its advantages; it will provide the 

optimal solution since all the information pertaining to the situation resides with 

the central command. If the scale of the mission is too huge, however, the central 

command system might be overloaded and not ideal for such implementation.  

b. Decentralized Multi-robot Coordination  

In contrast to the centralized control, in a decentralized approach each 

team member receives a task and completes it independently acting solely on 

the local information that it received. Although working independently, there must 

be a cooperative element to accomplish a global goal. The decentralized 

approach allows each robot to complete its own navigation to avoid obstacles 

and correct its path based on the environmental conditions. Their cooperative or 

collaborative elements come in the form of interaction between the robots when 

they are within range of each other or at designated points.  

This can be applied in a context of a complex search environment where 

each robot will go about completing some tasks or search a specific area to aid 

the rescuers in identifying the victims. Cao et al. (2006) demonstrated this 

concept by applying a distributed control approach to a hunting mission. Each 

robot searched for its targets independently. When they were within the sensing 

range of each other, they exchanged information. During the exchange of 

information, the robots synchronized their data to get an updated situational 

awareness of the environment and modified their actions accordingly (Cao et al. 

2006). 

Another example of a decentralized coordination is insect behavior in the 

natural world. Insects are influenced by the behavior of their others who are 

operating independently to achieve a bigger goal. It has been observed that more 

purposeful cooperation and collaboration can achieve more intelligence and 

capabilities when operating as a swarm. Cortez et al. (2009) presented a 

decentralized algorithm for a coordinated search by a robot team. Each robot 
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maintained its own map of the search area and navigated based on the belief 

map that was loaded in the system. Upon interaction with the other robots, the 

belief map was updated to reduce the search scope (Cortez 2009). 

Thus, decentralized approaches can be utilized where the global task is 

too complex and must be sub-divided into smaller sub-tasks. As they do not 

require intensive communication and computation during the operation, the 

platforms need not be equipped with big and bulky computers. Instead, 

miniaturized avionics can be used, which is ideal for search and rescue 

operations. Lightweight drones are an ideal solution for the first responders in 

tactical search. Eventually, the individual robot can aggregate the data to the 

global system to give a more complete situational awareness at the strategic 

level.  

c. Multi-robot Search and Rescue  

The potential of multiple robots in the search and rescue application is 

huge. The application in searching for survivors in an urban environment was 

studied by Chan et al. (2004). The application for search and rescue, however, 

followed a simple search strategy. Chan et al. (2004) used a simple random walk 

algorithm. Research in multi-robot control mainly focused on the control of robots 

in the formation or simple search methods. Few applications or solutions rely on 

remote sensing equipment to enhance the search mission and optimize the 

coordination between the strategic and tactical level in a post-disaster situation. 

As more UASs are evolving into full autonomy, multiple robot coordination to 

assist the rescuers in hybrid environments of centralized and decentralized 

control are evolving. Based on the review of the different types of interactions, it 

can be verified that a collaborative or cooperative interaction paradigm in a 

decentralized coordination scheme is an ideal means for the implementation of 

multiple robots for search and rescue.  
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3. PATH PLANNING 

A path planning algorithm has several tiers, but an initial path can be 

derived based on the utilization of probabilistic path-planners. These path 

planners include the Probabilistic Roadmap (PRM) and the Rapidly-Exploring 

Random Trees (RRT) approaches. Subsequently, the robots can interact with the 

environment through sensory information to obtain a spatial model of the area. 

The sensor resource management problem is a major challenge, whereby 

multiple sensors determine the measurements in the dynamic environment and 

fuse the data to improve the perception of the robot. This model allows the 

drones to safely navigate past objects and obstacles and thus have the flexibility 

to deal with unexpected situations.  

Wagner et al. (2012) address the curse of dimensionality by suggesting 

the implementation of the sub-dimensional expansion technique for large sets of 

multiple robots (Wagner et al. 2012). This technique dynamically varies the 

dimension of the path planning problem by restricting the planning to the 

configuration space that is within proximity. This approach reduces the 

computation time significantly to less than ten minutes for a 32-robot team. The 

Probabilistic Roadmap (PRM) planner will plan and generate a path that is free of 

any obstacles and has a feasible solution for the robot’s motion to maneuver 

from a given start to a goal point. The solution, in the form of the black lines for 

the PRM defined in the workspace with obstacles represented by the blue blocks, 

is shown in Figure 12. The basic idea behind the PRM is to take a random 

sample from the defined configuration space of the robot and use a local planner 

to connect these points. With the given start and goal point, the resulting graph 

can be determined based on a search method. The effectiveness depends on 

how densely the roadmaps fill the configuration space.  

 



 33 

 

Figure 12.  The various options generated by the PRM  

A path planning method for a search and coverage problem was devised 

by Karimoddini et al. (2011) to address a multi-UAV formation control problem. 

The means to converge the discrete decision making on a multi-robot system 

requires a hybrid supervisory control approach. Karimoddini’s team considered a 

two-dimensional leader-follower formation in which the UAV must reach a 

location relative to the designated leader, maintain its formation and avoid 

colliding with another UAV. The decentralized path planner was based on a finite 

discrete event system model. In this model, the formation control system is 

reduced to a discrete state that can be controlled by an existing discrete control 

system under supervisory control theory (Karimoddini et al. 2011). For a search 

problem, however, the path planner must be able to be updated based on the 

data obtained and respond accordingly to fulfill the mission objectives.  
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4. IMAGE PROCESSING 

Obviously in search operations, the quality of the sensory data affects the 

rescue effort. The rescue efforts will be dependent on a decision-making stage in 

which a target is present or not in operations. It is inevitable that, due to various 

circumstances, there will be mistakes in the interpretation of the imagery that will 

lead to false alarm.  

If the data is not reliable, the thrust in data obtained from the drones by 

the rescue team will diminish. For example, if the false negative is high and a 

survivor is present in the vicinity but was missed by the computer, the rescue 

team might not visit that location, leading to the possible loss of a victim. 

Similarly, when there is a probability of false positive, where a victim is detected 

when there is not a physical survivor, the rescue team might be searching for a 

needle in a haystack, thus wasting unnecessary resources. The challenge is then 

to establish and ensure that the data obtained from the sensors are computed 

effectively. The UAS used for the experimentation is equipped with a basic 

camera looking downwards to detect the potential survivors on the ground. The 

size of the area increased with altitude, although the possibility of victim detection 

decreased with height. The balance is to complete the search at the optimal 

height where victims can still be identified accurately without compromising the 

search process.  

D. PROPOSED CONCEPT OF OPERATIONS 

From the research in the various disciplines, the proposed concept of 

operations for the rescuers can be developed. There are two broad mission 

objectives at the strategic and tactical levels for a search and rescue mission, 

with the global goal to reduce the load on the rescuers to focus on rescue 

operations.  

At the strategic level, the aim is to collate all sources of information and 

identify a potential area of operations to allocate specific missions for the first 
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responders to “hit the ground” and commence their tactical mission. Remote 

sensing equipment will be used to obtain imagery, and the images can be 

integrated into a single picture to give the stakeholders an overview of the 

environment. The centralized command will segregate the operational area into 

smaller sections for the responders to visit for further search. The heterogeneous 

swarm at the tactical level is required to aid the rescuers in a manned-unmanned 

interface to detect and identify victims for the rescue mission. Subsequently, the 

data will be updated to the central command when new information is found. All 

this must be completed in the shortest time possible to enhance the survivability 

of the victims. Thus, the key metric is the number of survivors that it can find and 

rescue in the aftermath of the disaster. The efficiency comes in the form of 

finding the quickest path or route to the location by utilizing the fewest resources. 

The concept of operations is envisaged based on the five different phases 

described in detail below.  

1. Situational Awareness 

The vision is to utilize computational power to process multiple inputs of 

data obtained from various remote sensing equipment or ground sources to 

generate a comprehensive operational environment. This will be accomplished 

by completing three main tasks (Figure 13) as part of the situational awareness 

bubble. (1) The first is information gathering, where the overview of the 

environment is fused together, and hot spots and potential areas to search are 

selected as mission bubbles for first responders. (2) With the potential area 

identified, the imagery will be stitched together in a grid, both in the two-

dimensional and three-dimensional environments. Based on information 

obtained, a probability of survivors will be allocated to each cell. (3) Finally, the 

three-dimensional environment will be converted into point clouds in the virtual 

environment for the heterogeneous set of robots to navigate through.   
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Figure 13.  Tasks in the situational awareness phase 

2. Generation of Plan  

Typically, UxSs use pre-planned trajectories, but this may result in sub-

optimal search strategies, especially in an uncertain environment following a 

disaster. Thus, a method must be applied to dynamically change the path and 

search pattern. Due to energy limitations, multiple UxSs of varying capabilities 

carrying different sensors will be utilized; thus, the term heterogeneous was 

used.  

Two sets of plans must be generated in the generation of plan bubble by 

interpretation of the probabilistic maps called the belief maps to derive the 

optimal plans, as shown in Figure 14. An optimal path to reach the mission 

bubble and an optimal search must be derived for the designated search areas. 

This path and search pattern that the robots must undertake to complete the goal 

objective must be derived quickly with the fewest resources. With the situation 

mapped, the designated UxS rescue swarm will search the disaster zone, 

exploring and mapping potential locations of possible victims. The search 

patterns are generated based on traditional search theory and utilizing specialist 

UxSs for different aspects of the mission.  
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Figure 14.  Tasks in the generation of plan phase 

3. Deployment of Swarm 

With the trajectory and search path developed, the waypoints are sent to 

the heterogeneous set of drones to be deployed. The navigation of the swarm 

and environmental sensing for collision avoidance is completed independently by 

the individual robots to ensure that the drones arrive at the specified location 

without hitting any obstacles.   

4. Detection and Recognition of Victims 

To reduce the burden of sensor operators, the detection and recognition of 

the imagery must be completed autonomously. The possibility of false positives 

and negative interpretation of the imagery by the computer must be addressed, 

however. The thin balance between flying higher for a larger coverage but less 

accurate detection and recognition capabilities must be resolved to aid the 

rescuers optimally in identifying the victims. Thus, an algorithm that is a function 

of the height from the object must be used to detect the differences of the pixels 

in the image. An estimator based on the field of view at different altitudes 

computes the probability of detection. This prior information from the estimator is 

used as a mechanism to tune the efficiency of the detection algorithm. 
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5. Sharing of Information 

In the heterogeneous swarm at the tactical level, each UxS will maintain 

its own grid-based probabilities map that represents the discrete search space 

with a probability of the target present tagged to each cell. Typical uses of these 

maps include surface mapping, exploration or navigation in the research by Elfes 

(1989). The aim of this phase is to fuse the data from the various UASs and to 

share with each platform the updated components in each map to obtain a 

complete picture. There are two main challenges in the process of sharing 

information: the data fusion of the information as well as the network connectivity 

between the robots.   

The challenge for the data fusion portion is mainly the computational 

power in the processing and memory storage. Network availability in the 

congested environment of the multiple UxSs is the main challenge for the 

network connectivity during the operations. Since the UxSs are required to be 

lightweight and small for easy handling at the tactical level, they are likely to have 

limited communication range. Thus, optimal points to exchange information must 

be defined to reduce unnecessary movement that consumes energy. The drones 

can only exchange data and update their belief maps when they are within each 

other’s network communication range; an approach for such an exchange of 

information is shown in Figure 15. Each UxS have its own belief map generated 

in phase one and will synchronize the data when two UxSs are within the 

communication zone. With the updated data, the new belief map can be shared 

to give both UxSs the most updated search environment.  
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Figure 15.  Concept of transfer of information 

E. METRICS AND OBJECTIVE 

The global goal for the use of the heterogeneous set of UxSs in the search 

and rescue mission is to reduce the overall victim discovery time and, thus, it is 

essential to estimate the time the robot requires when generating the optimal 

path and search pattern for the mission. Based on the global goal, the 

overarching metric is to obtain a solution and the shortest distance for the UASs 

to accomplish the desired mission.  

To achieve the goals, however, it is also necessary to evaluate the 

performance of the algorithms during the processing. The most efficient frontier 

will be selected based on the evaluation criteria defined. The criteria were split 

into the global parameters and the task parameters. In the global parameters, an 

evaluation will be completed on the (1) probability of obtaining an optimal 

solution, (2) shortest distance that the solution will provide and (2) total resources 

required to process the solution.  
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The final set of parameters and strategies selected must be able to get an 

optimal solution in every instance; thus, the algorithm must ensure that an 

optimal solution can be obtained every time. The distance is an important 

function to minimize energy usage for the UxSs. Due to the limited battery power, 

a path generated that will result in a shortest distance will allow the UxSs to use 

the least energy and reserve them for other functions, thus enhancing their 

efficiency. The total time of computation will be completed at the global level 

while the individual time to complete each task will be done at the task level in 

selecting each strategy. 

At the task level, analysis for the three tasks—(1) sampling, (2) connection 

and (3) search—will be evaluated based on the individual parameters in terms of 

time to complete each task and iteration required in generating the results. The 

time required to complete each task is essential to understand which strategy is 

suited for the selection of points in the configuration space. For the sampling 

strategy, the number of iterations required will be compared for the different 

implementations. This is the number of points generated to achieve the collision-

free samples. The number of edges versus the number of collision-free edges 

will be evaluated for the connection strategy. 
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III. FUSION OF IMAGERY FOR SEARCH OPERATIONS 

Based on the analysis of tasks in the previous chapter, the two main levels 

of search are the strategic and the tactical levels. The flow of information is not 

as clear for search and rescue (SAR) missions as it can be either top-down or 

bottom-up, as illustrated in Figure 16. Information can be obtained either from 

aerial images from remote sensing or airborne platforms, which give a global 

overview, or from the people on the ground equipped either with handheld 

devices or unmanned ground vehicles. In this chapter, the search problem will be 

defined before the development of the belief map that a survivor is present in the 

operational area, this operational map will be used in the subsequent chapters to 

develop a trajectory and optimal search pattern to locate the survivor. A belief 

map is defined as a map that was developed based on information obtained at 

that specific time. It is called a “belief map” as it was believed to give a true 

representation of the ground at the point when the information was obtained. To 

develop situational awareness, a top-down approach will be used. Starting from a 

global perspective, mission bubbles and areas of interest will be identified before 

the three-dimensional cloud maps are generated for the unmanned systems.  

 

Figure 16.  The exchange of information in a SAR mission 
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A. SEARCH PROBLEM 

The goal is to search for survivors before rescue teams can be dispatched 

on the ground. The area of operation where the mission will be conducted will 

bound the configuration space. Within this configuration space, a search is 

conducted based on the current information that the decision maker has. The 

decision for each step of the search reflects the belief of the presence of the 

target in the specific location. The formulation also considers the evolution of 

information as data are being continuously updated during the operations. The 

measure of effectiveness of the decision based on the quality and robustness 

can be included.  

A search and rescue mission will encompass a wide area, as described in 

Chapter I. The problem setup in this section is a simplified model that can be 

scaled to a bigger area of operations if required. It was developed based on the 

control strategies framework in a probabilistic search by Chung (2007). Starting 

by considering the task of searching stationary targets , where  represents the 

number of targets present in a configuration space , the environment can be 

discretized into  cells. This configuration space is a grid-based probabilistic 

occupancy grid that is typically used in robot navigation or search operations. 

The discretization is based on the limitation of the platform chosen; it can be in 

terms of detection capabilities or ability to move in the environment. The choice 

of the size of the cells will dictate the effectiveness of the search model; if it is too 

small, the computation time for the reach will be too large for economical use. 

Similarly, if it is too big, there might not be a solution in generating a path through 

obstacles.  

Thus, the expression  defines that the single stationary target is 

within the operational area, while  will otherwise denote that the target is 
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not in the area. The configuration space is split into smaller cells and the 

expression  indicates that the presence and absence of search 

elements in the  cell, respectively. The representation of the  cell is 

 . 

1. Search Based on a Binary Hypothesis 

The search problem determines if survivors are present in the defined 

configuration space, and thus the search can be simplified to a decision between 

a binary hypothesis,  such that 

 

 
Equation 1 

 

The objective is to obtain the probability that the target is within the region 

that it is supposed to be in (i.e., to determine the probability when ). This 

probability is based on the measure of the consolidated belief that the target is 

somewhere within the region . This probability assumption is based on the 

likelihood that a survivor will be in the region where there are buildings or near 

infrastructure, while it is lower possibility that they will be in a rural area in the 

aftermath of a disaster. The individual cell belief probability, which states that the 

target is within that cell, is represented by . This probability addresses 

the global problem of identifying the specific location of the target in the region. In 

general, the probability function can be represented by the Law of Disjoint 

Probabilities as 

 
  

 

Equation 2 
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The rationale in taking a decision methodology approach is due to the 

probabilistic nature of the sensor models. The detection models used to 

represent the sensors are not perfect and the possibility of a false alarm or 

missed detection is inevitable in the practical world.   

2. Target Detection 

The detection of a target is a function of altitude. The dimension or area of 

coverage at higher altitude increases, but the resolution in the sensing 

diminishes with time. The detection model is based on a binary random variable 

based on the decision of whether the object is in the specific cell or not. These 

measurements are typically taken in a noisy environment and there is no 

restriction to the distribution of the measurement noise being sampled. The 

simple detection model is based on defining  as the measurement of the 

detection at the specific time step  taken in the  cell of the specific cell . The 

model for the imperfect measurement of detection considering the error 

probabilities of false positives (false alarm) and false negatives (incorrect 

detection) in the specific cell is given as 

 

 

Equation 3 

where  and  are detection probabilities for false positive and false negatives, 

respectively.  

These error rates can be obtained experimentally or be based on the 

sensor specifications. The experimentation method verifies the specifications that 

the original equipment manufacturer has stated. Symington et al. have conducted 

experiments on the probabilistic target detection by camera-equipped UASs in 

their research (Symington et al. 2010). The above model can be extended to 
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have a variation of height as the  and  values will be different at different 

altitudes. This detection model computes the likelihood of obtaining a 

measurement based on the error probability. 

3. Development of the Search Problem 

At the start of the search problem, based on the prior belief that a target is 

within the area, when  a target is in the region. The probability function is 

defined as 

  Equation 4 
 

When the probability that the target is in the area, the search problem 

reduces to finding the target in the area. In the context of the defined operations 

for this research, this initial belief can be derived based on the assessment of the 

areas. The hot spots where there are likely to be survivors are areas that have 

infrastructure, while rural areas might have a lower probability, especially if they 

are in remote areas, which can converge to non-unity. 

Thus, the search problem can be defined based on the initial belief 

obtained from prior information  and the probabilistic errors in the detection 

model  and , determine location of the target  is present within the 

configuration space  as a function of the observation made until time This 

belief evolves constantly, which governs whether the target is located within the 

configuration space at the end of the search, 

 
  Equation 5 
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4. Grid Cell Dependency 

The grid cell can be independent or dependent. In the independent 

approach, it is assumed that each cell will only be updated once the observation 

is complete. This is typically used when the number of targets is unknown or the 

target location is uncertain and it evolves over time. On the contrary, in the 

dependency assumption, the observation in any cell will affect the probability that 

the target is in the other cells. Thus, due to the dependency of each cell, a 

constant update of the belief map is required after every observation. The 

probability distribution of the area of interest is based on the belief function,  

and can be defined. The computation of the cumulative belief is a sum of the 

belief at every individual cell,  

 

 
Equation 6 

 

The computation of the belief probability can be obtained by Bayesian 

filtering that incorporates the proliferation of the target probability density 

function, as described in the book Probabilistic Robotics (Thrun and Burgard 

2005). The Chapman-Kolmogorov equation, specifically the discrete analog 

component, was used to predict components of the discrete filter by combining 

the information from the previous time step. As the search problem entails how 

the observation affects the belief function, the observation can be computed for 

each cell based on the following equation. This equation includes the detection 

model and the belief function of the previous step, which allows the computation 

of the filter: 

 
 

 
Equation 7 
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B. SITUATIONAL AWARENESS AND DAMAGE ASSESSMENT 

The initial mission bubbles must be identified from the bigger operational 

area before the belief maps of the specific mission areas that the search 

operations will undertake can be developed. The situational awareness phase as 

described in the flow chart in Figure 17 encompasses three distinct tasks: (1) to 

develop mission bubbles for tactical search and rescue through means of 

analysis of imagery at the global level and (2) to analyze the specific mission 

areas for distinct difference in the forms of damage assessment to (3) develop a 

discretized map that can be used to generate a plan to go to the location and 

search for survivors. In the last phase, the development of the grid-based belief 

map will be completed.  

 

Figure 17.  Task of the situational awareness phase 

These tasks are basically taking a big picture at the strategic level and 

decomposing the problem into smaller pieces that can be executed at the tactical 

level. The maps must be translated from the human perspective to the computer 

perspective in the form of a discretized grid. The flow and snapshot of the image 

that is generated are shown in the summary flow chart in Figure 18. At the 

strategic level, an overview of the area is generated. Subsequently, a specific 
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tactical view based on the assessment that a survivor is likely to be in that region 

can be developed. Once the tactical area is identified, the environment must be 

converted into a discrete grid that the computers can use to identify an optimal 

trajectory to the location and generate a search pattern.  

 

Figure 18.  Flow of data generated 

C. DEVELOPMENT OF MISSION BUBBLES 

The first task was to obtain the area of operations in which the search and 

rescue mission will be conducted. The operational area defined was within Camp 

Roberts in California and panchromatic remote sensing data of the location was 

obtained by the WorldView-1 satellite (Figure 19). The data was assessed via 

DigitalGlobe’s EnhanceView system. This imagery was captured on July 1, 2017, 

at a resolution of 0.5 m. 
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Figure 19.  Overview of operational area at Camp Roberts. Source: 
DigitalGlobe (2017). 

From the panchromatic image of the 2.0 by 0.8-kilometer area obtained for 

the area of operations, a conversion of the intensity of the image to double 

precision was first completed as shown in Figure 20. The image was further 

processed by extracting the pixels with the lowest and highest intensity into a 

binary image to distinguish the various features within the operational area. As 

observed in the binary image, an overview of the likely hotspots can be obtained. 

Three district areas within the area of operations can be identified as potential 

mission areas, as depicted by the orange boxes. Moreover, the roads and tracks 

are distinctly identified, which can be potential areas for search. 

With the overall mission area decomposed into sectors, the commander 

can dictate strategies to complete the search operations dependent on the 

amount of resources that he or she has on hand. In such a situation, the 

commander might deploy three sets of heterogeneous drones or even unmanned 

ground vehicles to the three sectors, and instead of getting the drones to go 

directly to the location, they can scan the roads enroute to the three main mission 

bubbles. Alternatively, the roads can be scanned by a fourth team of UASs, 
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which might comprise fixed-wing UASs instead of multi-rotors, which might be 

more efficiently used in smaller sectors.  

 

Figure 20.  Processed data of the operational area 

D. ANALYSIS OF CHANGES IN ENVIRONMENT 

Vision-based intelligence has grown and scientists have developed 

techniques to add to the capabilities to see and analyze images more effectively. 

Techniques and algorithms are developed for identifying differences between 

images and edge detection to extract and identify key features from the digital 

image. Upon the identification of the mission bubbles, the area of operations 

must be analyzed for key differences for search operations to focus on. This can 

be accomplished by identifying differences in the disaster area based on prior 

information. Two different techniques commonly used are discussed in this 

section: (1) location differentiation via pixel analysis and (2) edge detection 

based on different algorithms. 

A similar image processing of the mission area must be completed for 

further analysis, as illustrated in Figure 21. The latest image is extracted and 

post-processed to distinguish the vegetation from man-made structures. 

Typically, the vegetation areas will be on the higher end of the intensity range 

compared to the man-made structures. The image was analyzed based on the 

distribution of pixels, with the bulk of the pixels in the range of 0.55 to 0.65, as 
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shown in Figure 22. A scaling of the image is required to spread the distribution 

evenly to obtain an image that distinguishes the areas between the vegetation 

and man-made structures.  

 

Figure 21.  Identification of area of interest 
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Figure 22.  Image processing of the area of interest 

1. Image Analysis for Differences in Pixels 

A simple method of identifying the changes in a specific area can be 

accomplished by comparing images at different time steps of the area of interest. 

Specifically, an image obtained of the area of operations should be compared to 

the same area prior to the disaster. As the images are obtained from different 

time frames, it is likely that they were taken with varying illumination of the area 

and, thus, might have different variations of intensity. A correction can be 

completed before the cross-correlation to obtain sensible results. Cross-

correlation is not the same as convolution. Instead, it will take the intensity of 

pixels in the two images and produce a third image that contains similar indices. 

When both images are similar, the correlation index tends towards its maximum 

value.  

As stated, prior to the analysis of results of two images that might be 

obtained from different sources, they must be correlated to have the same 

reference frame and intensity. In the results shown in Figure 23, the maps of an 

area within Camp Roberts were obtained from open-source Google Maps and 
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DigitalGlobe. By glancing through the images, it was found that there is a new 

built-up area near the bottom left of the image. This difference is distinct in this 

example but it might not be as apparent in a post-disaster zone. Nevertheless, 

both the images must be geo-located to fixed their reference points, or else the 

comparison will not yield sensible results. If the reference index is not aligned, it 

will always yield differences in the imagery. Thus, this method is dependent not 

only on sensitivity of the geo-reference data but also the intensity of the image. 

The image on the left has a better illumination and thus is richer than the one on 

the right, which looks duller. This is mainly caused by environmental factors, 

ranging from sunlight to cloud cover. The images thus must be post-processed 

by analyzing the statistical data of the pixels as described in the previous section. 

The intensity of the pixels must be normalized to obtain a similar level of contrast 

for analysis.  

 

Figure 23.  Comparison of area of operation. Left image taken from Google 
Maps (2017); right image adapted from DigitalGlobe (2017). 

To explore the effects and results of such methods, different areas with 

different characteristics were selected to identify the challenges and effects when 

identifying changes in operations. Two types of areas selected specifically were 
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(1) a rural area where a new building was developed on an empty piece of land 

within thick vegetation and (2) a development of a new building replacing past 

infrastructure. The areas were selected mainly for the application of a search and 

rescue operation. In the first case study, the area was chosen to identify the 

possibility of locating the position of a building that could have been destroyed by 

the disaster. Hypothetically, although the analysis was done based on the 

difference between an empty plot and a developed plot of land, it can also be 

completed in the opposite direction to find a building destroyed in a disaster. The 

second scenario was chosen to understand the complexity of comparing images 

based on a high intensity of features dominant in an urban environment, in which 

there are many elements that could have changed from the past to the present 

but must be located for search operations. 

In the first scenario, the fishing harbor of Kokkari on Samos Island in 

Greece was selected. The town has small houses surrounded by undulating 

terrain, which is an ideal area for analysis of changes in a rural region. The 

images were extracted from DigitalGlobe captured by WorldView 1 on two 

different dates, September 11, 2015 and June 07, 2017. As noticed in Figure 24, 

both images have a distinct contrast between them; the vegetation in the image 

with no buildup area has a richer green compared to the one with the building, in 

which the vegetation is lighter in color. The cross-correlation image generated 

after the correction of the intensity between the images shows the areas that are 

correlated. The tracks can be seen to show significant correlation except for 

areas that were covered in vegetation. This is especially so on the top right area 

of the image, where vegetation was covering the tracks that were subsequently 

cleared, possibly during the commencement of the construction of buildings. In 

the third image, areas that are distinctly different from the combination of the 

images are identified as the black areas, which were extracted. The processed 

image returned the changes between the two images and this includes the 

changes that were picked up on the track as well as the new buildings that were 

built. The differences in the tracks are subtle to the naked eye, but on close 
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analysis, there were indeed changes in the region identified. The outline of the 

buildings was also distinct, as seen from the processed data. Thus, this method 

is verified to be effective in picking changes to the environment that humans 

might initially miss. 

 

Figure 24.  Comparison of changes in a rural environment 

In the second scenario, an urban environment was analyzed. The much-

acclaimed new headquarters of Apple Inc. in San Jose was selected, mainly for 

the massive change that it created in the region but also for its fixed boundary, as 

shown in Figure 25. The image was taken from a database dated August 30, 

2012 prior to any construction in the area and compared to a recent capture of 

the area with the almost completed building on July 6, 2017. On August 30, 

2012, the area has several other buildings within the region, thus posing a more 

challenging requirement to differentiate the changes.  
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Figure 25.  Comparison in an urban environment. Adapted from DigitalGlobe 
(2017). 

Based on the initial cross-correlation between the images, processed data 

is somewhat different from what was expected when the commonality between 

the image is more significant. In this example, the third image produces distinct 

markings with respect to the difference seen in the areas. The difference is 

distinctly marked in white and black; thus, by extracting the tail end of the 

intensity range of the image, we can sharpen the image as shown in Figure 26. 

With the post-processed image, the newer image is distinctly marked as white in 

the composite image, and in retrospect the black regions indicate the areas of 

the pass. The results show that this method can distinguish the differences in the 

infrastructure by cross-correlation, and data can be extracted for analysis. An 

example will be the three white buildings that were near the new building; based 

on the composite map, the location can be georeferenced and thus be used for 

rescue operations if required.  
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. 

Figure 26.  Processing of difference in urban environment 

The difference in the images are obtained by correlation of the pixels in 

two different images. Based on this method, the results are sensitive to the 

location as well as the intensity of the images. It does provide good data for 

analysis and provides an insightful awareness for rescuers to identify areas to be 

searched, but it is subject to the two conditions stated above. The results show 

that the analysis in the rural and urban area is also different and must be handled 

differently. Although insightful, alternate means must be established as an 

alternative means of detection of differences in the region.  

2. Image Analysis Based on Edge Detection 

Edge detection is a technique for image processing based on finding the 

edges of key features in the image. This is completed by detecting any 

discontinuities within the image by identifying the change in intensity between 

them. Upon the identification of the possible boundaries, the derivatives at these 

areas are computed and measured against the surrounding pixels to verify if 
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each pixel is within the boundary or not. The result of the analysis is a binary 

image in which the edges will be displayed. This method in identifying the 

discontinuity is possible since all objects inherently have edges. These edges are 

produced due to a variety of factors, ranging from the discontinuity on the normal 

or due to changes in depth, changes in material properties for example from 

vegetation to concrete infrastructure, and possible variation of scene illumination. 

Scene illumination is a potential negative source of information and might lead to 

false positive results. A building under poor illumination will be represented in a 

dark color and thus might be confused with the vegetation around it as a single 

entity.  

An edge as defined is a location on the image that has a rapid change in 

the image intensity function. The derivative with convolution can be obtained by 

partial differentiation. Convolution is a general-purpose filtering mathematical 

operation by implementing different matrices to give a value of a central pixel by 

adding the defined weighted values of the neighboring pixels. The key objective 

is to enhance the image by smoothing, sharpening or intensifying the pixels. The 

output of convolution is a new modified filtered image. The mathematical 

equation is based on the following derivative. The derivative of a two-dimensional 

function,  can be written in the following form: 

 
 

Equation 8 

 

 

For discrete data, it can be approximated using finite differences as: 

 
 

Equation 9 

 

Thus, the gradient of the image can be obtained as: 

 
 Equation 10 
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The edge strength of the gradient can be obtained as: 

Equation 11 

Both the Canny and Sobel methods use the gradient between the pixels to 

determine the edges. The first step is the convolution of images by using the 

gradient kernel on both axes. The Canny method, however, applies additional 

steps to suppress the non-maximum gradient magnitude. 

a. Sobel Method

The Sobel filter (sometimes called the Sobel-Feldman operator) is a 

discrete differentiation operator. It was co-developed by Irwin Sobel and Gary 

Delman at the Stanford Artificial Intelligence Laboratory in 1968. The idea was 

presented as an “Isotropic 3x3 Image Gradient Operator” (Sobel 2014). This 

operator is based on convolving the image with a filter in both the horizontal and 

vertical planes. Although this method is computationally efficient, the results 

produced might not be as accurate. Nevertheless, it depends on the intention 

and requirements in obtaining the edges; if the application is to identify the 

outline of the buildings for comparison purpose, this might be a possible solution.  

b. Canny Method

John Canny developed the Canny edge detection method in 1986 utilizing 

a multi-stage algorithm that he developed to detect the edges in imagery. As 

stated, after the application of the Gaussian filter to first smoothe the image and 

remove the noise, the gradient magnitude and orientation using the finite 

difference approximation of the partial differentiation are computed. This is an 

important step to ensure that the noise is filtered to reduce false detection of 

edges due to the noise. In addition, the non-maximum values are suppressed to 

check if the pixel is a local maximum along the gradient direction. Hysteresis 

thresholding is also completed on the edges to link them together by using a high 
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threshold at the start of curves and a low threshold to join them. The Canny 

algorithm is useful in different environments as it allows the parameters to be 

tailored for the identification of edges based on the application requirements.  

c. Comparison of Results

Based on the different methods, the edges were evaluated in operations 

using the two techniques in MATLAB. Based on the Sobel method, the images 

generated tend to several areas of discontinuity and the edges are not smooth. 

Unlike in the results obtained by the Canny method, the lines are distinctly 

generated. The roads of the area are nicely mapped out and the lines are 

connected within the area of operations. Moreover, the possibility of tuning the 

threshold for the Canny edge detection gives it more flexibility. It was observed 

that both methods are very sensitive to noise and this might affect the edge 

detection results. 

Nevertheless, these edge detection techniques are useful in object-based 

image analysis. Figure 27 shows the detection of infrastructure using edge 

techniques. A rectangle fit as a means for comparison is an ideal shape to use 

for analysis of damage to a building. This can be obtained by comparing the area 

of the building and obtaining the fraction of the changes. A threshold of greater 

than 50% of the changes constitutes a building that is likely to be damaged. This 

is an area where there is a need to collate the database and utilize machine 

learning to analyze the large set of samples to know what is the threshold to 

classify this area of interest  

Equation 12 

where is the area of the original object and is the area of the building of 

interest.  
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Figure 27.  Detection of infrastructure using edge techniques 

By utilizing simple methods, areas of interest can be identified for search 

operations. Depending on the environment where the disaster occurs, this 

technique can be used to obtain the necessary information. Thus, utilizing remote 

sensing imagery as a means for damage assessment has huge potential. With a 

large database extracted from past experiences in the various types of natural 

disasters, it is possible to use them in a neutral network and develop machine 

learning algorithms to detect damage caused by natural forces. With the 

availability of computer resources, it is possible to transit from the computer-

based pixel-to-pixel or object-to-object comparison to a deep learning neural 

network like how humans recognize images. 

E. DEVELOPMENT OF 3-D MAPS OF THE OPERATIONAL AREA 

The techniques utilized in the previous section to first develop mission 

bubbles from the area of operation and identify high probability areas of survival 

are completed based on two-dimensional overview maps obtained from aerial 

platforms. To get a clearer picture of the situation in the post-disaster 
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environment, however, it is necessary to develop further visualization tools to 

capture the essence of the environment in the form of models, as shown in 

Figure 28. The world, after all, exists in three dimensions, not only in terms of 

elevation but also the complex infrastructure that evolves in every city. In this 

section, a three-dimensional environment is created based on the data obtained 

from imagery obtained from the various resources. The environment will be used 

as a visualization tool for the commander to plan and have a better situational 

awareness of the ground. This model subsequently will be used as a baseline for 

reconstruction effort of the city.  

 

Figure 28.  Conversion of two-dimensional to three-dimensional environment 

The two-dimensional overview situational map is a good tool for 

understanding the situation at the strategic level; it gives an initial indication of 

the environment (e.g., number of buildings that are damaged) through 

comparison with pre-disaster imagery, or by identifying possible routes through 

edge detection as shown in the previous section. The Fire Administration SOP 

stated, however, that a commander is still needed on the ground to assess the 

situation and identify possible areas of ingress or egress at the site. This itself is 

challenging not only in terms of situational awareness but also the stress induced 

by the chaotic environment. Due to the limited visual purview of the area of 
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operations, there will be a tendency to miss critical elements that are hidden in 

the blind spots of the commander, which might lead to unnecessary risk. This ill-

informed decision might trigger a sequence of unfortunate events.  

The intended application of the three-dimensional maps will drive the 

resolution of the environment that will be built. For our scenario, it is not the 

resolution of the images that we are targeting; instead, it is spatial analysis that is 

important. The models showing the shapes of the buildings, as shown in Figure 

29 give a good perspective of the environment describing the type of buildings 

that the rescuers need to tackle. These maps, even when partially completed, will 

provide more information than a two-dimensional image—as the saying goes, “an 

image paints a thousand words,” while a model describing the details of the world 

probably represents a million words.  

   

Figure 29.  Outline of buildings shapes 

To obtain the model and gain a clearer understanding of the environment, 

the collation of images of the environment can be pieced together to form a 

three-dimensional environment. This tool can be used as a visualization aid for 

planning and provide a better situational awareness for the commander on the 

ground. The challenges in this conversion of the two-dimensional images to a 

three-dimensional environment come in the form of understanding the element of 

depth in the picture and converting the object in the image to a three-dimensional 

element in the environment. To extract the rich information of the buildings, it is 
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necessary to obtain high-resolution remote sensing data from DigitalGlobe as 

well as images at different views from the ground. These images define the 

building’s height, volume and location as pieces in a three-dimensional world, as 

shown in Figure 30.  

 

Figure 30.  Development of point cloud based on multiple images from various 
orientations 

The state of the environment (i.e., damage to the buildings) is the focus in 

the initial phase of the search. Thus, the resolution of the three-dimensional 

maps focuses on the outlook, as shown in Figure 31. The facet of each side of 

the buildings gives the commander a better understanding of the key buildings to 

focus on. As the team makes their way to the area of interest based on the path 

generated (which will be described in the next chapter), this three-dimensional 

map allows the commander to start the initial assessment of the destruction in 

the environment, saving time and providing a better sense of the environment to 

shorten the decision process. As the commander is at the command center and 

has all the resources on hand, he or she can decide on the resources to be 
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deployed to the area of operations. Moreover, upon the detection of 

abnormalities in the environment (i.e., potential danger areas or tasks that 

require more equipment), resources can be activated instantly instead of waiting 

for feedback, as occurred in the past. For example, when it is detected that 

access to a building is blocked, but there is a need to rescue a survivor on the 

second level, the commander can direct a vehicle that is nearby to the actual site 

to aid the rescuers. This map will be constantly updated as more imagery is 

obtained throughout the rescue mission, which eventually is a useful tool for the 

reconstruction phase of the affected area.   

 

   

Figure 31.  Representation of buildings in three-dimensional model 

The first step in the development of such three-dimensional maps is to 

overlay the environment with the terrain elevation map, which is widely available. 

This terrain map defines the topography, contours and elevation of the 

environment and is typically used by the aviation industry to determine the height 

above ground level in their flight path planning to avoid collision with natural 

features like mountains. This map forms the baseline of the ground condition, 

and additional information obtained of the infrastructure is placed on top of the 

ground at the various elevations, as shown in Figure 32. The additional 

information obtained from the ground, aerial or satellite photography captured at 

both nadir or oblique are used to build an accurate and informative environment. 

Due to the large volume of data to be analyzed in comparing the time of image 
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being captured and computing the height of each building based on the 

projection, however, this form of reconstruction might be time consuming.  

 

Figure 32.  Infrastructure being built on top of the elevation model 

As stated, the requirements and intention of the maps dictate the 

resolution of the map. Based on the illustration, additional details like trees were 

added as they are required for navigation for the unmanned ground vehicle. They 

are represented as blocks instead of actual trees, however, so the areas under 

the branches should be empty. The aim of this model is to distinguish the various 

features of the environment; a sample portion of the road and tree were extracted 

and are shown in Figure 33. The map and the trees are clearly indicated and 

segregated and represented as blocks.  
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Figure 33.  Distinction between the various features of the environment  

As the three-dimensional map is built in layers, the details of each feature 

can be added when more information is obtained of the environment. This will 

assist the people in charge for the recovery phase after the natural disaster. 

Moreover, it can be used as a tool to understand potential issues and develop a 

mitigation plan. An example of such scenario planning is utilizing the three-

dimensional map to simulate a flood; the planners can identify hot spots and 

potential areas of concern—especially the low-lying areas—and derive strategies 

to mitigate loss of lives when such disaster occurs. This model is a useful tool for 

simulating what-if scenarios and the impact of various types of natural disaster, 

which allows for better contingency planning and, thus, more efficient allocation 

of the appropriate resources. 

In the context of our defined search mission, the challenge is to obtain the 

three-dimensional environment quicker. As the key objective is to evaluate the 

infrastructure and identify specifically the location of the damage to buildings, a 

localized model will suffice. A localized scan of the area of interest from different 

perspectives reduces the information data set, which allows quicker development 

of the three-dimensional environment. This was completed by taking images from 

drones and meshing them into a single map. These images of the area of interest 

were taken by Jeremy Metcalf, Associate Researcher from the Physics 

Department in NPS, with a DJI Inspire drone. The drone was programmed to fly 
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a specific route and capture images at the specific time step. With the time step 

and location of the drones known, the data could be extracted to develop the 

three-dimensional environment. These images were stitched together and re-

constructed by Jeremy into a three-dimensional map by geo-referencing the 

various locations in the image and piecing them together in Agrisoft.  

The elevation model as shown in Figure 34 is a useful tool for both 

manned ground and aerial systems to navigate in the environment. This concept 

is no different from how larger aircraft navigate in the world today. The aircrafts 

utilize the digital elevation of the terrain to avoid natural obstacles like mountains. 

As the unmanned systems are required to navigate through the infrastructure 

(e.g., buildings and roads filled with obstacles), such maps will aid in the 

development of a collision-free trajectory for the unmanned systems. The 

unmanned ground vehicles (UGV) can utilize this map to avoid obstacles on the 

ground while the drones will require this data of the environment to avoid 

colliding with the buildings. These three-dimensional maps will, therefore, be the 

main source to develop the trajectory to navigate to the mission bubbles for the 

various unmanned systems in the next chapter.  



 69 

 

Figure 34.  Elevation model after the incorporation of images 

As the areas become denser (i.e., in a city), the resolution and accuracy of 

the model plays a higher role in ensuring that the obstacles can be avoided. With 

the development of the mission bubbles and the construction of the three-

dimensional map completed, we will now shift the focus to the development of 

trajectory to the area of interest and deriving an optimal search pattern to ensure 

that the survivors can be found in the shortest possible time. 
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IV. PATH GENERATION AND SEARCH PATTERN 

The optimal path to the key areas of interest must be obtained from the 

maps developed at the strategic and tactical level. Subsequently, an optimal 

search pattern for that area of interest must be generated. In this chapter, the 

development of the path based on the mission bubbles will first be developed 

prior to the search pattern to optimally search that area being completed. In the 

planning phase of the search mission, there are two main tasks required to 

generate the two main plans: (1) a trajectory plan to get to the key area of 

interest and (2) an optimal search plan to cover all the key features identified as 

potential rescue sites. This process is shown in Figure 35. 

 

Figure 35.  Phase 2 - Generation of Plan 

A. PROBABILISTIC ROADMAP 

The objective of the trajectory plan is to get the heterogeneous swarm of 

unmanned systems to the identified mission bubble in the shortest time. There is 

a trade-off between the time to develop a plan and the optimal solution, however. 

The most optimal plan will require all the information about the operational area, 
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which means all possible points on the map and their associated paths must be 

analyzed, including those that do not provide a solution. As the overarching 

objective is still to find the shortest possible time to identify the survivors’ location 

and rescue them, this trade-off study allows a balance between providing the 

near optimal solution in the shortest time. 

This trajectory planning problem is solved based on a defined 

configuration space, which is an area on the map that the robots can maneuver 

in. This configuration space, based on the information obtained, is split into two 

distinct types: (1) forbidden areas  and (2) obstacle-free zones . 

Those areas that have obstacles are marked as forbidden zones, while obstacle-

free zones are areas where the robots can operate freely within the configuration 

space. In the dynamic environment, the segregation of the space is based on 

information received from the various sensors. The configuration space of the 

area of operations obtained from the satellite is shown in Figure 36; the areas 

marked in black are forbidden zones and the white indicates areas where the 

drones can be maneuvered. This specific configuration space that was used 

seeks to determine the trajectory for unmanned ground vehicles.  

 

Figure 36.  A configuration space generated for the operational area 
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A probabilistic roadmap planner (PRM) will be utilized to generate the 

trajectory of the unmanned system. The PRM is efficient in terms of computation 

resources, easy to implement based on established concepts, and versatile for 

different types of applications. The path that is identified for the robots will 

correspond to the configuration space that connects the defined start point of the 

robots to the desired end for the search mission. This trajectory is collision-free 

based on the conditions that all points generated and the path connecting each 

point are not within or do not cross the forbidden zones. The global idea of the 

probabilistic roadmap planner is to sample the free space  to identify points 

or nodes of a graph . A graph G consists of two elements: a vertex set 

 whose elements are all the points or nodes on the graph and the edge set  

connecting the pairs of the nodes. Each edge  is associated with a pair of 

nodes within the configuration space. The useful pairs of points are chosen and 

used to connect these points by a local planner. If the paths are collision free 

(i.e., do not pass through the forbidden area), then an edge is added to the 

graph. The graph generated will consist of all possible connections within the 

chosen configuration space. The pseudocode for the construction of the graph is 

shown in Figure 37. Out of all these possible edges, a search algorithm is used 

to optimally obtain the path from start to end to generate the optimal trajectory 

desired.  
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Figure 37.  Pseudocode for the construction of the PRMRoadmap   

Thus, it can be seen that the PRM approaches the problem in three 

distinct phases: (1) sample configuration space is examined to obtain possible 

points in which the robots can move and (2) the pairs of points are connected to 

evaluate the feasibility of the paths based on specific criterion before (3) 

completing a tree search to obtain the most feasible path from the sets of paths 

generated in the configuration space. There is no best technique for the 

respective phases as the computation is dependent on the environment and 

requirements of the area of operations. Thus, a comparison between the different 

techniques based on the computational time as well as probability of obtaining a 

solution are evaluated in this section. This comparison gives an insight of the 

merits of the various techniques and the rationale in selecting the method for the 

different phases. A set of optimal waypoints for the robots to navigate through will 

be generated by this PRM.  

1. Generation of Sample Points within the Configuration Space 

There are several methods to sample the configuration space for motion 

planning. The most commonly used method is to sample the entire space 

randomly or pseudorandomly. In this method, the points are obtained by using a 

distribution within the sample space and randomly identifying points on the map. 

Non-uniform probabilistic sampling is useful in scenarios in areas of operation 

along a narrow pathway. Tan et al. (2017) successfully explored the utilization of 
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a normal distribution instead of a uniform distribution in generating the waypoints 

more optimally for the Kingfisher unmanned surface vehicle (USV) in Monterey’s 

Lake El Estero, in motion planning for the probabilistic roadmap.  

The points are randomly generated based on the applied statistical 

distribution by a random number generator. An algorithm is used by a computer 

program to generate the random numbers systematically. The terms systematic 

and random contradict themselves, however; to be programmable, a systematic 

method is required to generate the algorithm. Based on this requirement, a 

computer scientist uses a seed, which defines the start point of the generated 

numbers, to compute random numbers. This will mean that the numbers 

generated will follow the same sequence whenever the same set of seeds is 

used, however. Although it follows a specific sequence, due to the computational 

speed and power, it can process a large set of data computation and thus 

produce a set of random numbers in a data set. This is called pseudorandom 

number generators. MATLAB utilizes the widely used general-purpose Mersenne 

Twister algorithm to produce pseudorandom numbers. The name of the algorithm 

was derived from the fact that its period length was chosen to be a Mersenne 

prime. If a truly random number is required, however, the generator seed can be 

shuffled based on implementing the following command prior to the calling of the 

respective random number generator in MATLAB-Rng(‘shuffle’). This command 

uses the current time from your computer as a seed, which makes it 

extraordinarily unlikely to obtain identical results. 

From the trade-off study completed in the simulation by Tan et al. (2017b), 

we found that the computational time can be reduced utilizing a normal 

distribution for the sampling strategy, although the distribution chosen is 

dependent on the type of map. As the bulk of the computation time is dependent 

on the number of connections required, however, the simulation will focus on the 

connection strategy and the search method instead.  
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2. Variation of Connection Strategy 

The time to complete the connection is dependent on the number of points 

and the criteria in selecting each connection. Thus, a connection strategy is 

required to evaluate the different edges based on (1) sampling requirements and 

(2) the length or distance between each of the nodes to evaluate whether or not it 

meets the criterion of being collision-free. The extremes in sampling the points 

are comparisons for all points in the configuration space versus sampling points 

that are closest to each point’s connection strategy. By sampling all points, the 

most optimal solution might be obtained, but it is not as practical, as there are 

obstacles within the space that mean unnecessary selection and verification. 

Similarly, by lowering the connection distance, you can limit the number of 

connections to be evaluated and thus reduce computational time. If the distance 

was set too small, however, there will be insufficient edges to obtain a solution.  

For optimality in computational resources, connecting to K-Nearest 

Neighbors instead of to all the points was explored. The K-dimensional (K-d) 

graph converted to the binary tree is shown in Figure 38 as obtained from de 

Berg et al. (1998). This method searches for the nearest points based on the 

defined K value. The most efficient method to determine the K’s nearest 

neighbors utilized the K-d tree data. A K-d tree is a space-partitioning data 

structure and is used in organizing points into a K-dimensional space to construct 

a binary tree that decomposes space into cells such that no cell contains too 

many points. 

 

Figure 38.  K-d and binary tree. Source: de Berg (1998). 
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The K-d graph search was implemented in MATLAB utilizing the 

KDTreeSearcher function. This model stores results of a nearest neighbor search 

using the K-d tree algorithm. Utilizing the knnsearch function, the K-nearest 

neighbors using K-d tree is completed and compiled into an index. As the data 

set will flag out the own location, the nearest neighbors are taken from the 

second column onwards. The nodes can be generated after the completion of the 

search.  

a. Sampling Requirements 

The first analysis was completed by varying the number of neighbors to 

connect. The analysis was completed based on the assessment of the global 

parameters to verify if a solution is obtained at every simulation and a trade-off 

between the shortest distance as well as the computing resources required to 

complete the tasks. The shortest distance is selected due to the limited energy 

available from the platform; the shorter the distance, the less the consumption of 

battery power, and thus the more efficient the mission. The rationale on 

understanding the computing resources is mainly due to the relation of the size of 

the computer in proportion to the computational requirements. The larger the 

computational requirements, the bigger the computer and thus the heavier the 

system to be placed on board, which indirectly will reduce the efficiency of the 

drones.  

In each simulation, 20 runs were completed with the same parameters to 

evaluate if an optimal solution can be achieved at every instance. A study on 

varying the k values from 5 to 30 in six steps was completed and compared 

against the extreme case where all points are connected. As observed in Figure 

39, a solution is unlikely to be obtained when we connect the nearest five 

neighbors, especially in an environment where there are many obstacles or when 

the free space is along a curvature like a road. When more points can be 

connected, the probability to connect across the configuration space increases. 
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The configuration is almost filled out by the multiple cyan lines when 30 nearest 

neighbors were connected in the configuration space.  

       

Figure 39.  Variation of K-values in the C-Space variation  

A summary of the data obtained from the simulation run is tabulated in 

Table 2.  When the K-value increases, the number of edges to be connected 

increases. To connect all 500 points, 125,751 edges were investigated, 

compared to fewer than 10,000 edges when the evaluation was completed for 20 

neighbors. Although the number of edges investigated for all points is so large, 

only 7,837 of them are valid, meaning they do not cross the forbidden 

configuration space. It was observed that the ratio of the edges investigated to 

number of good edges flattens out in the middle region before exponentially 

increasing.  
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Table 2.   Summary of data for variation of K-values 

 
 

We plotted a graph in Figure 40 to evaluate and understand which solution 

provides the shortest distance and computational time. The orange line, which 

depicts the computational time, obviously increases with the K-value; this is 

mainly due to the larger number of connections to be investigated. The minimal 

distance does not significantly improve even when we evaluate all the connection 

points, however. In the local minimum, where the minimal distance extracted 

from the 20-simulation run reduces by approximately eight meters, the average 

among the 20 runs did not improve the situation as significantly as the increase 

in time to obtain the solution. Thus, based on the optimization frontier, a K-value 

between 15 and 25 will suffice in obtaining a solution with the given increase in 

computational time. It is evident that the small decrease in distance does not 

warrant the usage of the computational resources. Therefore, the K-value of 20 

was chosen as the baseline value in the development of the probabilistic road 

map for the area of operations.  
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Figure 40.  Plots of K-values against computational resources and distance 

b. Connection Length Variations  

With the K-values determined, the length of connection was varied to 

evaluate the impact on the distances and computational time. As shown in Figure 

41, a shorter connection will result in a similar scenario with the lower K-value 

where a solution might not be obtained due to its inability to connect the cluster 

of points. With the increase in length, more points are selected and a solution is 

obtained for every simulation run. We plotted a graph as shown in Figure 42 

based on the data obtained from Table 3. It was clear that there is no significant 

improvement even though the length increases; moreover, the computational 

time saturates, so the length of 100m was selected as the baseline value for the 

PRM.  
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Figure 41.  Variation of length of connection in the C-Space variation 

 

Table 3.   Summary of data for variation of length of connection 
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Figure 42.  Plots of varying length against computational resources and 
distance 

3. Variation of A* Heuristic Function 

A* search is the best-first-search technique that solves the problem by 

searching the edges via the “greedy” manner that finds the optimal solution 

based on the algorithm shown in Figure 43. It evaluates each path based on the 

sum of the cost from start  and cost-to-go to the goal  as shown, 

 
  Equation 13 

 

Figure 43.  The A* search algorithm 
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The heuristic function used to compute a cost-to-go estimate in the A* 

search algorithm must be an admissible heuristic. To get an admissible heuristic, 

we depict three edges (A, B and C), as shown in Figure 44. A is a simple cost-to-

go function based on the straight-line distance from the point of interest to the 

goal. The metric is admissible as the straight-line distance never overestimates 

the cost or distance to reach the goal. The straight-line distance is always the 

shortest distance connecting any two points in the two-dimensional environment. 

C is always less than or equal to the sum of A and B; thus, it never 

overestimates. The Euclidean distance, which is used when the movement is 

possible at any angle, was used as the measurement of the heuristic function. It 

is computed based on the following equation: 

Equation 14 

Figure 44. Shortest distance heuristics 

a. Shortest Distance

The heuristic score is a computational estimate of the distance between 

each node and the goal. At one extreme, , is the only function to 

determine the score, and the A* search in fact is the Dijkstra’s algorithm, which 

guarantees the shortest distance for the selected path. If the heuristic  is 
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always lower than the total cost of getting from the nth location to the goal, 

however, then the A* search is guaranteed to find the shortest path but at the 

expense of time. The A* search will behave perfectly given perfect information 

(i.e.,  is exactly the cost of moving n to the goal). The A* search flexibility to 

vary its computational behavior based on the heuristic and its cost function 

allows the trade-off for computational speed versus optimal solution. The 

weighted heuristics allow speeding up the A* search by decreasing the cost 

functions.  

b. Weighted Heuristics

In the weighted form, a factor  can be included in the computation of the 

heuristic. The lower the factor, the more likely to find a best path, while a higher 

factor will reduce computational resources. Based on the same heuristic function 

as the Euclidean distance but with the factor included, the cost function was 

modified to 

The choice of heuristic for the A* search will determine the time to 

complete a search for a solution; it is a trade-off between obtaining an optimal 

solution where the distance is the smallest against computational time. We 

concluded that by choosing the right parameters, it is possible to obtain a 

solution consistently, but the tradeoff will be dependent on application. A 

sensitivity study was completed to understand the impact of the computational 

time against the variation of the factor . 

c. Sensitivity Analysis

The sensitivity analysis was conducted by varying the factor  from 0 to 2 

in five steps. The solution for three of the PRMs generated is shown in Figure 45. 

Equation 15 
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When the factor was set to zero (i.e., ), the solution gave the shortest 

possible distance and the most optimal solution in terms of distances. This 

computation requires the most computational resources. We plotted a graph as 

shown in Figure 46 based on the data obtained from the simulation run 

summarized in Table 4.  It was clear that as the factor decreases the 

computation time to compute the solution decreases. We could reduce the 

computational resources by almost half if the factor  was selected. In this 

scenario, the reduction was approximately 60s. The selected area of operations 

is required to be scaled for different scenarios, as the  is still able to 

provide consistent results; thus, this factor was selected as heuristic function for 

the PRM.  

     
. 

Figure 45.  Variation of weighted heuristic in the C-Space variation 
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Figure 46.  Plots of varying length against computational resources and 
distance 

Table 4.   Summary of data for variation of heuristics 

 
 

In this section, the probabilistic roadmap develops the path that the 

ground vehicles should use to maneuver to the area of interest based on the 

shortest path identified in the configuration space. This can be used for 

unmanned aerial vehicles by representing the area as blocks and ignoring the 

altitude of all the building (i.e., assuming that the buildings are of constant 

height). Alternatively, this can be scaled into a three-dimensional probabilistic 
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map that can used for drones if they are required to navigate in an environment 

where the buildings have different heights, for example in downtown San 

Francisco. The trade-off is the extensive resources required to obtain a solution 

for the probabilistic road map. 

B. SEARCH PATTERN 

The probabilistic roadmap to the areas of interest is only the first part of 

the solution. The next task is to identify the optimal means to search the areas of 

interest that have possible survivors in them. As the layout of the operational 

area will differ from site to site, and depending on the search requirement, the 

points identified might not be in defined shape to execute the typical search 

pattern. Thus, in this section, a flexible means was developed to create a pattern 

to conduct the search optimally based on the points of interest identified as key 

areas to cover by the commander.  

To begin with, we will need to evaluate the typical search patterns that 

have been used universally. There are several search strategies and techniques 

that are established internationally for different types of scenarios. The 

International Aeronautical and Maritime Search and Rescue (IAMSAR) manual, 

which defines search patterns used by aerial and marine assets, recognized the 

following general search patterns applied in the various situations (MOC/ICAO 

2010). They are the (1) parallel or creeping line search for a big area, (2) 

expanding square search for a specific area, and (3) contour search in a 

mountainous environment.  

Both the parallel or creeping line search as illustrated in Figure 47 are 

based on sweeping the search area by maintaining parallel tracks throughout the 

search. The only difference between the two search patterns is the orientation of 

the search leg. For a manned platform, as the search area might be huge and 

the camera have a large field of view, the turns might not be a critical factor. 

Unlike unmanned platforms, this turn will consume energy and thus reduce the 

already low endurance of the unmanned systems. Both UGV and UAS will be 
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affected, and minimizing the turns will allow the battery power otherwise drawn 

by the propulsion system to be used for other purpose. This type of search is 

typically used when the area of search is huge and requires the area to be 

searched uniformly (i.e., when the target location is unknown and has equal 

probability of being anywhere in the area). In our context, this search pattern will 

probably be the most effective in searching for a survivor in the aftermath of a 

disaster. This search pattern was probably used by USAF pilots during the 

search for survivors after Hurricane Katrina.  

 

Figure 47.  Creeping line and parallel track search 

On the other hand, the expanding square pattern is usually used when the 

predicted location of the target is centered at a specific position (i.e., the target is 

expected to be in the center but might have drifted away due to the currents of 

the sea or wandered off from a crashed aircraft). This type of search, as 

illustrated in Figure 48, is typically used during the search for survivors after an 

accident where the accident location is known. The search area is characterized 

by a smaller environment or when a concentrated search strategy is required, 

like the search for USS Scorpion (SSN-589). The shape can also be in the form 

of a circle and not necessarily be limited to a square as defined. The main 
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objective is to start the search from a known point where the probability of finding 

the survivor is the highest and expand outwards. Finally, a specialist type of 

search method called the contour search, as shown in Figure 49, is typically used 

in mountains or valleys where the survivors are likely to be injured or trapped 

along the tracks that hug the edges of the mountains. This requires the search 

vehicle to scan the area of interest following the path and increase or decrease 

the elevation as they scan the area of operations.  

 

Figure 48.  Expanding square search pattern 
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Figure 49.  Contour search 

Drones can be used in place of the manned platform to effectively search 

the area of interest and obtain the aerial images that can be used to both locate 

survivors and reconstruct the three-dimensional environment. In the event the 

area is free of obstacles, ground vehicles can be used but with limited search 

area. Thus, for the development of search, drones will be used. With a wide area 

of search to be completed, it is likely that the creeping line or the parallel track 

search method will be used for the operations. As stated, however, due to the 

limitation of drones, it is ideal to reduce the number of turns, so the search 

pattern must be set up like the parallel track search. The drone performance is 

governed by the altitude or speed that it flies; the higher the altitude, the less 

likely the searcher can identify the target correctly, and the faster it flies, the 

lower the probability of detecting a survivor even though the drone covers a large 

area. This challenge was tackled in the works of Ergezer (2014), where he 

explored the problem of planning routes for multiple UAS with the objective to 

collect data from a designated region. The information is obtained from the 

sensors on board the UAS and the quality of the information is dependent on the 

altitude and speed of the drones. Thus, to tackle this coverage path planning 

problem, a holistic approach considering the various factors must be 

accomplished systematically.  
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Coverage path planning is the task in the robotics domain that determines 

a path that requires the robot to cover all the specific areas defined by the user. 

The simplest form of such a requirement is the home-based vacuum cleaner, 

where the robot is required to cover the floor area and clean it thoroughly. A 

general method utilizes the belief map, which maps the highest probability area 

of survivors to move itself in that space until all the cells identified are covered. In 

this method, the only optimization required is to determine the method whereby 

the grid must be searched before all the required cells are covered. This can be 

in the form of greedy heuristics whereby the UAS will move to the highest belief 

grid among the neighboring grids in which it can maneuver. This is effective if the 

belief map is well defined with varying probabilities. If it is a uniform environment, 

this method has no additional advantage. Alternatively, a potential field method 

can be used based on applying repulsive force on the visited cell and instead 

searching areas that have not been explored. In this form, the search pattern 

tends towards looking at areas not visited; the downfall is if the survivor is near a 

cell that was searched before, there is a chance that he or she will be missed or 

be found at a later stage.  

By utilizing multiple platforms, the search time will be reduced as the task 

is divided among the various resources. Moreover, it introduces redundancy for 

mission completion as it allows drones to collaborate and cover each other if a 

failure has occurred to any of them. The other UASs can be used to cover the 

region that was allocated to the failed drone and thus do not compromise the 

overall mission requirements. A common approach to such a coverage problem 

can be tackled like the vehicle routing problem, whereby a set of routes that have 

been identified are split optimally amongst the available resources. This is the 

generalized form of the traveling salesman problem typically discussed in 

operational research or computer science. The routes identified must fulfill all the 

customers’ requirements (i.e., to deliver a product), which in this case is to be 

searched by the drones based on the limited energy capacity that they have. The 

transformation of a coverage problem into the vehicle routing problem requires 
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the mapping of all the points that are required to be covered up to a set of edges 

of a graph. Once the graph has been visited, it is assumed that the robot has 

completed the search of that specific area and fulfilled the necessary 

requirements.  

This dynamic vehicle routing problem aims to converge spatial (a 

distributed area) and temporal coverage of the area of interest. The temporal 

convergence is governed by the existence of the time constraints to reach the 

survivors as quickly as possible. Thus, the objective is to minimize the distance 

travelled and thus optimize the usage of drones to maximize the requirements to 

search the assigned points of interest and minimize the number of drones to be 

deployed so that they can be used in other areas of interest. Thus, the solution to 

the coverage problem is governed by the following conditions in this sequence: 

(1) to specify the optimal search pattern given the specific area of interest and (2) 

to determine the optimal number of drones required to complete the mission.   

1. Development of Search Pattern 

The area of operations must first be identified by determining all the points 

of interest that the commander wants to explore. The development of the search 

pattern was based on the methodology that was derived by Huang (2001), who 

stated that the number of turns directly affects the time required to complete the 

search. The coverage strategy will depend on the platform that is used. To 

reduce the number of turns (which typically consume more energy), it is 

necessary to align the route carefully; thus, the sweep direction will be completed 

parallel to the smallest linear dimension of the area. It is commonly understood in 

the aviation world that the route length and duration of flight can be significantly 

reduced if the number of turns is optimized. Thus, for a given search area, the 

parallel track search pattern is more optimal in terms of energy consumed than 

the creeping line search pattern. 

Since the shape of the search pattern, which is governed by the points of 

interest, is unlikely to be in the form of a rectangle in our type of scenario, it is 
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essential to analyze the selected points. All the points identified are connected 

based on the similar method defined in the probabilistic roadmap method. They 

are all connected to each other to evaluate the distances between them based 

on the Euclidean distance. From the pool of points defined, the four extreme 

points are identified to determine the direction of search, which will be parallel to 

the length of the smallest distance governing the boundary. To have the most 

optimal usage of the chosen platform, the strategy developed must generate the 

search path that searches parallel to the longest dimension of the set of points. 

A sets of arbitrary sample points was selected to test the algorithm in 

generating the search pattern; from the results obtained, as shown in Figure 50 

where a longitudinal search pattern (x-direction) was generated and Figure 51 

where a lateral search pattern (y-direction) was selected, the optimal search 

pattern was generated correctly based on the points selected, as indicated by the 

blue crosses in the image.  

 

Figure 50.  Search pattern based on the longitudinal direction 
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Figure 51.  Search pattern based on the latitudinal direction 

From the area of interest obtained in the previous chapter, the commander 

will identify all locations of interest where the probability of survivors is higher. 

This will be at the areas where there are buildings and, thus, the commander will 

select the points of interest as shown in Figure 52. All the buildings in the 

environment will be selected by clicking on the user interface. Upon the 

identification of the points of interest, the search pattern will be generated to 

ensure all the points of interest are covered and the optimal pattern is derived. 

This is shown in Figure 53, where the blue crosses are areas that the 

commander has identified as key points of interest, while the red circles are the 

boundaries for the search pattern with the cyan lines as the optimal orientation of 

the search pattern. 
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Figure 52.  Selection of area of interest 

 

Figure 53.  Search pattern for the area of operations 

2. Routing Strategy for Search 

The coverage problem can be posed as a vehicle routing problem, which 

requires a set of vehicles to visit several customers. In the context of the 

research problem, intuitively the customers might be assumed to be the points of 

interest where there is a possibility of a survivor. As we are mapping a coverage 



 96 

problem, however, this assumption will not provide an optimal solution. Instead 

the customers will be defined as the extreme points on the coverage row, as 

indicated by the red circles in the search pattern. The rationale revolves around 

the fact that all the points of interest have been mapped onto a search pattern 

that has been clearly defined and requires the servicing vehicle to cover the area; 

thus, to avoid missing any points of interest, the extreme points of the coverage 

rows must be covered. The points will be serviced by the available unmanned 

systems, who need to overfly or scan the region to observe if the survivor is 

present in that specific point of interest. The number of unmanned systems is 

dependent on the availability and thus a variable in the problem. The objective is 

to minimize mission time with the resources available for disposal, and 

constraints must be added to ensure that all the points are covered sufficiently 

but practically.  

The starting point to the routing strategy is to define the requirements; 

coverage rows have been defined based on the search pattern. The cyan lines 

are paths that the unmanned system must take, while the red circles indicate the 

boundaries that the vehicles must cover to ensure that all the points of interest 

have been covered. Thus, the unmanned systems must be forced onto the cyan 

lines as part of their routes and they must visit all the customers in the form of the 

red circles to ensure that the coverage problem is resolved. Effectively, the 

mission time is dependent on several components: the distance  from 

customer  to , the velocity of the unmanned system  when flying from 

customer  to , and the preparation time of the unmanned system .This 

function  is dependent on the number of drones and number of operators 

available to set up a single UAS in time . Each UAS will also have an 

endurance limitation , which is dependent on the platform. A binary variable 
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 was used to indicate if the unmanned system was used to cover 

the specific path on the route. This is to ensure all the paths are covered and at 

the same time no duplication of resources was used. The scenario will be based 

on the usage of drones as they are the most effective unmanned system in 

covering a wider area of search.  

 
 

 

Equation 16 

 

This is to be accomplished by  number of drones where , operated 

by  number of operators where  over a specified  number of customers 

in the search pattern where . The main objective is to minimize mission 

time; this can be achieved by minimizing the time taken for the longest distance 

required to be covered . 

 
 

Equation 17 

 

subject to 

 

 
Equation 18 

 
 

 
Equation 19 

 

In this problem, each constraint serves a different purpose. In equation 18, 

the individual time for each drone is accounted for and, defining it with the 

objective function, it will form a min-max linear problem. The second constraint in 

equation 19 handles the resources available to launch multiple UAS; if there is a 
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single operator, the constraint will be on the operator to set up and launch the 

UAS. Thus, there is a lag time in the utilization of the platform (i.e., when the 

operator is working on the first drone, there is no action on the second drone). 

This might result in the ineffectiveness of having more drones if the area to be 

searched is small (i.e., if the search area requires only ten minutes to be 

searched, and the preparation time of a single UAS is ten minutes, before the 

second drone can be launched the search might be completed and thus render 

the second drone useless). This of course will change if more operators are used 

and the results will differ, assuming there are two drones and two operators. 

Effectively, the flight time not including the launch time can be halved. 

As each UAS has an endurance limitation, however, an additional 

constraint must be added and it is governed by equation 20. This constraint will 

thus limit the area that the set of drones can operate in (i.e., if the search area is 

too large, the only way is to have more drones to cover the whole area). 

Moreover, if the launch point is too far for the drones to complete any meaningful 

search (i.e., the time to fly to the site is equivalent to its endurance), there will not 

be a feasible solution. Thus, it is necessary to tie in with the initial planning phase 

as described in Chapter III, where the mission bubbles must be allocated based 

on the capabilities of the platforms available. The size of each mission bubble 

should be allocated appropriately for the effectiveness of the system. 

 

 

               Equation 20 

 

To ensure that the sets of drones visit each node, the following constraints 

were added: Equation 21 enforces that all the nodes are visited except for node 

one, which is the launch node, while equation 22 states that a drone will leave 

from the node to which it arrived to avoid discontinuity in the solution.  
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Equation 21 

 

 

Equation 22 

 

This equation ensures that the UAS returns to its original node and there 

are no internal cycles based on the standard sub-tour elimination constraint by 

Christofides (1981). 

 
 

 

Equation 23 

where  

Finally, the number of UAS used in the mission cannot be the maximum 

number of drones available, and this is defined as the following constraint in 

equation 24.  

 

 

Equation 24 

 

By solving the objective function in equation 17 with the following 

constraints defined from equations 18 to 24, the minimum number of drones 

required to cover the search area will be defined. Based on a search pattern as 

shown in Figure 54, for a single UAS with an operator, the time for the mission to 

search the location was approximately 26.5 minutes and the total mission time 

was 30.5 minutes where four minutes was set as the launch time for the drone. 

When two drones  are similarly operated by a single operator (Figure 55) 

with the same setup time of four minutes to launch each drone, however, the 

total time required to complete the mission was 21 minutes, with the first drone 



 100 

flying for 17 minutes and the second drone for 13 minutes. If we add an 

additional drone for the same mission (Figure 56), the savings will only be 1 

minute with the three drones’ operation time at 19, 18 and 20 minutes, 

respectively. Thus, a trade-off is required to determine if the additional resources 

should be used here or at other locations.  

 

Figure 54.  Single UAS search pattern 

 

Figure 55.  Two UAS search pattern  
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Figure 56.  Three UAS search pattern  

Based on the tools developed in Chapters III and IV, mission bubbles are 

developed to obtain trajectory for the unmanned systems to navigate to the 

search area. In addition, an optimal search pattern was generated to complete 

the search at the points of interest. A simple experimentation was completed in 

the next chapter, and tied in with another research in detection of moving targets 

completed by CPT Ang Wee Kiong.  
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V. FIELD TRIALS 

With the development of the initial framework in identifying mission 

bubbles, obtaining trajectories and search patterns for points of interest, an 

experimentation was conducted at Camp Roberts in conjunction with the 

research on the feasibility of using visual sensors onboard an unmanned aerial 

system (UAS) to autonomously detect and track moving targets in real-time 

operation. The key goal of the experimentation was to understand the limitations 

on the task completed thus far and identify potential areas of improvements that 

should be explored to enhance the capabilities, which will be covered in the next 

chapter.  

A. OPERATIONAL SCENARIO 

The scenario for the field experimentation is bounded to the area 

surrounding the McMillan Airstrip at Camp Roberts, California, as depicted in 

Figure 57. The scenario is that a hurricane has swept through these areas and 

the team from the California Fire Department was tasked to locate possible 

survivors around the vicinity.  

 

Figure 57.  Operational area for field experimentations 
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The UAS platform was used during the flight trial flown by CPT Ang Wee 

Kiong was the Matrice 100 shown in Figure 58 from the Da Jiang Innovations 

(DJI) Science and Technology Company Ltd. The 3.6-kilogram UAS is capable of 

up to 22 minutes of flight and is equipped with a camera that can be customized 

for various research and development uses. The technical specifications are 

shown in Table 5.   

 

Figure 58.  Overview of Matrice 100 

Table 5.   Key performance of Matrice 100 UAV. Source: DJI (2017) 

Parameter Specification 

Battery TB47D Voltage/Capacity 22.2V/4500 mAh 

Maximum Takeoff Weight 3600 g 

Maximum Wind Resistance 10 m/s 

Maximum Speed w/o payload & wind 22 m/s 

Hovering Time w/o payload & wind 22 mins 

Transmission Range (LOS, no interference) 5 Km 
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B. PHASES OF EXPERIMENTATION 

The various phases of the search as developed throughout the thesis 

were put to the test during the field experimentation. This was based on the 

techniques developed in Chapters III and IV to determine the mission bubbles in 

the operational area and allocate the required unmanned system to the various 

areas through the most optimal trajectory as well as the idealized search pattern 

to maximize energy and at the same time minimize time. The flow charts of the 

task and information used for these tasks are based on the five key phases 

identified, while the information flow is illustrated in Figure 59. 

 

Figure 59.  Field experimentation flow chart 

1. Development of Mission Bubbles 

In the first phase, the mission bubbles must be developed at the area of 

interest. The overview of the area of McMillan Airstrip obtained from DigiGlobe 

on July 12, 2017 was obtained for the initial analysis. Upon further study of the 

area, it was found that the key area of interest was identified at the southeastern 

portion of the area, as shown in Figure 60 and indicated by the white pixels in the 

image. These white pixels indicate the built-up area and, thus, are the likely 

points where there are potential survivors. This point of interest must be 

investigated further to obtain more information; thus, a set of unmanned systems 
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must be sent to the area. In addition, the airstrip is another area of interest and 

should be evaluated. The rationale to evaluate the runway is that it is a key entry 

point for supplies to be delivered. The runways should be evaluated for damage 

to see its functionality and allow the commander to evaluate if it is a potential 

resource that can be utilized during the whole operation. Thus, apart from 

focusing on the search mission, this tool gives the commander a better 

situational awareness to not only search for survivors but also to plan for further 

operations. The flexibly of the system gives the commander the latitude to 

determine points of interest for different objectives, not only in search operations 

but also to identify access routes and infrastructure that can be used for other 

purposes throughout the operations.  

 

Figure 60.  Operational area for field experimentations 

2. Search Pattern 

Utilizing the same tool developed in Chapter IV, the points of interest near 

the built-up area and at the end of the runway were selected. The algorithm 

based on the capability of the sensors’ field of view will determine the point to 

which the drone is required to fly to develop the search pattern. The derived 

search pattern does not go to the end of the indicated points; instead, the search 
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pattern is derived optimally to the maximum point at which the sensor can cover 

the point of interest. The search pattern and the proposed trajectory for a single 

UAS is shown in Figure 61. The search pattern similarly was developed based on 

the points. The operational time for a single UAS is 19.2 minutes with a flight time 

of 15.2 minutes based on the specifications of the UAS.  

 

Figure 61.  Search pattern for the area of operations 

The tool was used to evaluate the optimal number of UASs for the 

operations. From the simulation run, it was observed that for this specific 

scenario, two UASs will suffice, as shown in Figure 62. The two UASs will 

complete the mission within 17.3 minutes, with one UAS flying for 9.3 minutes 

and the other for 11.6 minutes. The third UAS can only be ready to be launched 

at the 12-minute mark as there is only one operator; moreover, due to the launch 

location, it is not optimal to launch the third UAS, so it was not deployed. It can 

thus be seen that the number of UASs to be deployed for an optimal search not 

only depends on the preparation time but also the distance where it is launched 

from. This tool was used effectively and has the latitude to change parameters 

for different types of operations, not limiting to a search mission. For example, 
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this can be used in the military context if a requirement is to identify threats or to 

deliver a payload to a specific location; by tuning the parameters, we can quickly 

identify the number of resources to be utilized optimally for any type of mission.  

 

Figure 62.  Two UAS search pattern  

C. DETECTION AND RECOGNITION 

The key focus of the thesis was mainly on the assessment of the situation 

and the development of mission bubbles and subsequently the trajectory to the 

location and the development of the search pattern. The search pattern as shown 

above is the tool to navigate the drones to the location; the next phase as 

described in the phases of a search operation is the detection of targets. The 

detection of targets, which is another important element of a search mission, was 

undertaken by Ang (2017) as part of his thesis in assessment of onboard electro-

optic sensors to enable detection and sensing capability in a cluttered operating 

environment (Figure 63). This is phase four of the five phases for a search 

mission that can leverage technological advancement, as highlighted in Chapter 

II, to aid search operations. Although the focus of his research was the systems 
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engineering approach, the application aspects of his works and possible 

integration to the search application tools were explored here.  

.  

Figure 63.  Imagery obtained during trials. Source: Ang (2017). 

The algorithm that was developed in his thesis autonomously detects and 

tracks moving objects, which is a good fit in searching for survivors in a rescue 

mission. The algorithm processes the video inputs to isolate the moving targets 

from the background. The target acquisition process can be tuned based on the 

angular variance and point density threshold. Upon identification, these moving 

targets are highlighted by a bounding box in the ground control station 

autonomously without a need for operator input, thus allowing an operator to 

control multiple platforms at one time, as shown in Figure 64. From the test 

conducted by Ang (2017), by varying the algorithm parameters it was observed 

that higher resolution video feed provides a wider field of view with better clarity. 

Due to the increased encoded data and network limitations, however, high-

resolution video may result in increased latency. Thus, there is a trade-off in 

terms of resolution and transfer of information.  
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Figure 64.  Identification of targets completed by Ang (2017). 
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VI. CONCLUSION AND RECOMMENDATIONS 

The five key phases in the search mission were derived in Chapter II are 

clearly defined and recapped in Figure 65. Methods were used to enhance and 

shorten the process to give the commander a quicker means to identify survivors 

in the operational area. In fact, the tools used fused the observe, orientate and 

decision part of the observe, orientate, decide and action (OODA) loop. This 

chapter concludes the findings, identifies gaps and proposes future works to 

enhance this mission planning capability.  

 

Figure 65.  Proposed approach to search and rescue operations 

A. CONCLUDING REMARKS 

This research proved that by utilizing the technologies that are available 

and fusing them with the right techniques, it is possible to leverage them and 

transform simple innovation into a capability that is useful in many applications. 

In this thesis, a search mission was optimized by utilizing image processing 

techniques to consolidate information from various sources into a single map that 
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the commander could use to enhance situational awareness. Technologies were 

used to collect, store, and share essential information among the various 

stakeholders, which allows the commander in chief to allocate the right resources 

for various applications. This is necessary not only to provide emergency 

responders with an update on the natural environment, but also to inform them of 

the state of the infrastructure around the area of operations. In this thesis, the 

focus was to collate the information for a search mission; it can be expanded to 

include, for example, the status of the power grid or water supplies to serve those 

living in the environment. As the tool was completed modularly, the methods 

discussed can be expanded for this purpose. By utilizing the damage 

assessment tools, the status of the power grid can be evaluated, while constantly 

updating the three-dimensional maps allows plans to be developed for the 

recovery phase.  

In addition, with the advent of computational power and miniaturization of 

computers, the unmanned system can develop the optimal trajectory within 

minutes based on the configuration space identified. This automated sequence 

can be done without any human intervention, which frees them to complete tasks 

that require their focus. The probabilistic road map can be used to find the best 

path available to reach the search area, and the search pattern can be easily 

defined based on the commanders’ input. In the future, the points of interest can 

be computed autonomously by applying data analytics methodology embedded 

with machine learning in which the computer can learn from patterns to crunch 

large data sets and transform them to necessary information for the 

commanders. This helps to fuse the OODA loop and cut down on reaction time 

for commanders. Similarly, this tool is not necessarily fixed to a single 

application, and it can be customized for different purposes including military 

applications especially when we are shifting to network-centric operations where 

information is constantly shared and exchanged to accomplish a common goal.  
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B. THESIS CONTRIBUTION 

The research establishes a mission planning tool with a set of 

heterogeneous unmanned systems to execute a search mission optimally. 

Although this was applied to a search mission in a post-disaster environment, it 

can be extended to network-centric missions in the military context. The ability to 

retrieve and compare various images to determine changes and convert them to 

a three-dimensional environment allows a common picture to be painted and can 

be utilized for the computation of optimal path and search plans. This is by no 

means a product, however; as technology advances further, more tools can be 

used effectively to enhance this capability. The study on data analytics in the 

financial world, where patterns are analyzed to optimize profits, or on 

autonomous machine learning are possible avenues of further expansion. The 

importance is the ability to change and adapt to the ever-growing environment. 

Otherwise, if the potential is not tapped, the efforts of our forefathers in the 

development of technologies will be wasted. Technologies should not be 

exploited—they should be harnessed, and humans should work in tandem with 

and not suppress them in fear of being taken over.  

C. RECOMMENDATIONS FOR FUTURE WORK 

As stated, the avenue for further work is boundless. For this thesis, 

specific areas where more work can be done in the five key phases are 

discussed here. This list is by no means complete, and it should evolve as 

technology develops.  

1. Generation of 3-dimensional Search Plan 

The probabilistic road map developed was demonstrated in a two-

dimensional environment for an unmanned ground vehicle. Since the 

computational power is so advanced, however, a three-dimensional probabilistic 

road map can be explored, as shown in Figure 66. This is especially effective for 
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operations in an urban environment where drones will be required to fly past 

buildings and obstacles in a dense environment.  

 

Figure 66.  Three-dimensional probabilistic roadmaps 

2. Sharing of Information 

This is one area that the thesis barely touched on, but it is key in the 

sharing of information. The means to share information among the various 

platforms and the optimal means to exchange information must be studied 

intensively. The hardening of the network environment is also an area that the 

computer network gurus should consider, as search operations will occur in a 

cluttered environment. If the system was expanded to military operations, then 

the constant sharing of information might lead to a potential weak link in the 

capabilities. Thus, this discipline is something that must be addressed if the 

system is to be robust and effective.  
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APPENDIX.  PROBABILISTIC ROAD MAP DATA 

Figures 67 to 69 are the probabilistic roadmap plots that are obtained for 

the various simulation studies completed as part of the thesis.  
 

            

 (a) K = 5    (b) K =10 

             

 (c) K = 15    (d) K = 20 

             

 (e) K = 25    (f) K = 30 

Figure 67.  Uniform distribution of 500 samples with 100 m edge length 
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 (a) Length = 10m   (b) Length = 30m 

            
 (c) Length = 50m   (d) Length = 100m 

            
 (e) Length = 200m   (f) Length = 300m 

Figure 68.  Uniform distribution of 500 samples with 100 m edge length 
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        (a) Dijkstra’s Algo     (b)  
 

        

 (c)     (d)   

 

(e)   

Figure 69.  Normal dist. of 500 samples with 200 m edge length – Varying K 
values for weighted heuristics  
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